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Abstract

Background: The coat colour of fallow deer is highly variable and even white animals can regularly be observed in
game farming and in the wild. Affected animals do not show complete albinism but rather some residual
pigmentation resembling a very pale beige dilution of coat colour. The eyes and claws of the animals are
pigmented. To facilitate the conservation and management of such animals, it would be helpful to know the
responsible gene and causative variant. We collected 102 samples from 22 white animals and from 80 animals with
wildtype coat colour. The samples came from 12 different wild flocks or game conservations located in different
regions of Germany, at the border to Luxembourg and in Poland. The genomes of one white hind and her brown
calf were sequenced.

Results: Based on a list of colour genes of the International Federation of Pigment Cell Societies (http://www.ifpcs.
org/albinism/), a variant in the MCIR gene (NM_174108.2:c.143 T > C) resulting in an amino acid exchange from
leucine to proline at position 48 of the MCIR receptor protein (NP_776533.1:p.L.48P) was identified as a likely cause
of coat colour dilution. A gene test revealed that all animals of the white phenotype were of genotype CC whereas
all pigmented animals were of genotype TT or TC. The study showed that 14% of the pigmented (brown or dark
pigmented) animals carried the white allele.

Conclusions: A genome-wide scan study led to a molecular test to determine the coat colour of fallow deer.
Identification of the MCTR gene provides a deeper insight into the mechanism of dilution. The gene marker is now
available for the conservation of white fallow deer in wild and farmed animals.
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Background

White coat colour or dilution are commonly found
within fallow deer in game farming and in the wild. It is
important for the management of the white animals to
identify the responsible gene variant and develop a gene
marker. This is the only way to make informed state-
ments about the distribution of the white gene allele in a
population. However, up to now, no scientific articles
have been available on the colouring of fallow deer and
nothing was known about the genes that are responsible
for the white coat colour in this species.

A list of 256 genes involved in the white colour or
dilution is available from the International Federation
of Pigment Cell Societies (http://www.ifpcs.org/albin-
ism/). The most important proteins are formed in
melanocytes where they are involved in pigmentation
on five independent levels: melanocyte development
and migration, melanosome biogenesis, melanosome
transport, biosynthesis of melanin and control of
melanogenesis.

Major proteins involved in melanocyte development
and migration are the tyrosinase protein kinase KIT
(KIT), the KIT ligand (KITLG), endothelin 3 (EDN3),
endothelin receptor type b (EDNRB). Melanocytes con-
tain melanosomes, subcellular lysosome-like organelles
in which melanin pigments are synthesized and stored
before distribution to the surrounding keratinocytes.
Biogenesis of melanosomes is controlled by premelano-
some protein (PMEL), silver (SILV), pink-eyed dilution
protein (P) and adaptor related protein complex 3
(AP3). Melanophilin (MLPH), myosin Va (MYO5A) and
RAS-related protein b27a (RAB27A) are involved in
melanosome transport.

Tyrosinase (TYR), tyrosinase-related protein 1
(TYRP1) and dopachrome tautomerase (DCT) are
involved in the biosynthesis of the different kinds of
melanin [1]. TYR catalyses the rate-limiting reaction in
melanin synthesis, converting tyrosine to dopaquinone
and oxidizing 5,6-dihydroxyindole (DHI) to indole-5,6-
quinone [2]. TYRP1 and DCT function further down-
stream in the melanin biosynthetic pathway [2, 3].
Melanin synthesis is regulated by a-melanocyte stimulat-
ing hormone derived from pro-opiomelanocortin 1
(POMC1), melanocortin 1 receptor (MCIR), agouti
signalling protein (ASIP), microphthalmia-associated
transcription factor (MITF) and by additional proteins
such as the premelanosome protein 17 (PMEL17) [4],
the pink-eyed dilution protein [5], and the melanoma
antigen recognized by T-cells protein (MART-1) [6].
The MCIR and its ligand, the a-melanocyte stimulating
hormone (a-MSH) are involved in modifications of coat
colour [7]. Further factors involved in transcriptomic
regulation are the MITF, a basic-helix-loop-helix
(bHLH) transcription factor [8].
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In other ruminants, for example cattle, at least eight
different genes have been associated with white colour-
ing: ASIP [9], TYR [10], KIT [11], KITLG [12], MCIR
[13, 14], PMEL [14], mast cell growth factor (MGF) [15]
and MITF [16].

In addition to colour inheritance in cattle [17], infor-
mation is also available on sheep [18], goats [19] and
buffalos [20]. Recently, we characterized a single nucleo-
tide substitution in the TYR gene associated with white
coat colour in a red deer (Cervus elaphus) population
[21]. While variants in tyrosinase are commonly associ-
ated with oculocutaneous albinism type 1, an amino acid
exchange at position 291 in TYR was found to be associ-
ated with coat colour dilution in this population.

Nothing is known about colour inheritance in Dama
dama. Although so far only a few genes seem to be asso-
ciated with the whitening of cattle, there is still a wide
range of candidate genes to be considered in the search
for the genetic cause of the whitening of fallow deer.

The aim of the present study was therefore to identify
the causative variant for coat colour dilution in the fal-
low deer and to develop a genetic marker to facilitate
the conservation of white animals.

Results

Whole genome sequencing of a white hind (Fig. 1) and
her brown calf was performed to reveal the causative
variant of colour dilution in fallow deer.

Sequencing of the hind and her calf resulted in a
coverage of 9.48 and 9.68 fold, respectively. A total of
26.18 and 26.71 gigabases were sequenced. 85.58 and
85.69% of these sequences could be mapped to the bo-
vine genome, respectively. Around 11 million SNPs were
identified.

After variant calling and annotation, 12,751 SNPs were
extracted as a subset of SNPs based on a list of colour
genes detected in mice, human and zebrafish (Inter-
national Federation of Pigment Cell Societies; http://
www.ifpcs.org/albinism/). Three thousand nine hundred
fifty-three of them were non-synonymous (ns) SNPs that
covered 149 genes. They were located in ASIP (2ns+5
synonymous [s] SNPs), DCT (21 ns + 33 s SNPs), EDNRB
(6ns+ 15s SNPs), KIT (18 ns +85s SNPs), MCIR (11
ns+ 49s SNPs), TYR (20ns + 45s SNPs) and TYRPI
(25ns+ 46s SNPs). Synonymous SNPs were excluded
from further processing. Following the hypothesis of a
recessive inheritance of the white colour, we expected
the genotype of the white hind to be homozygous for
the white allele and the brown calf to be heterozygous.
All genes and SNPs that did not correspond to this
assumption were filtered out.

After filtering, sixteen genes with nineteen non-
synonymous SNPs were left and confirmed by Sanger se-
quencing (Table 1). For each of these SNPs a PCR
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Fig. 1 Phenotype of the coat, eye and muzzle (a) and the claws (b) of a typical white individual

system was established to test the association of the gene
variant with the phenotypes of one additional white and
one additional brown individual of the population. Four
SNPs showed the expected genotype-phenotype associ-
ation and were tested on further white (# =3) and
brown (n =3) individuals. Only the genotypes at one
SNP in the MCIR gene were associated to the pheno-
type in these individuals. Results of the phenotype-
genotype association are presented in Supplementary
Table 1. Subsequently all animals (n = 102) were tested

for the SNP at the MCIR gene revealing a 100% match
between genotype and phenotype (Fisher’s exact test:
P =84~ %) (Table 2).

Eleven out of 80 wildtype or dark pigmented individ-
uals carried the TC genotype (14%). Any other wildtype
or dark pigmented individual were homozygous for the
T-allele. Any of the white individuals was homozygous
for the C-allele. The MCIR SNP (c.143T >C) is pre-
dicted to result in an amino acid substitution from
leucine to proline (p.L48P).

Table 1 List of candidate genes after extracting non-synonymous colour genes and testing with Sanger sequencing

Chr Chr_pos Ref Alt Gene Acc.No. SNP Codon aa subst.
13 51,640,322 C T ATRN NM_173995.3 c1573C>T Gat/Aat p.D525NN
23 41,483,931 G C DTNBPI1 NM_001045947.1 c871G>C Gee/Cec p.A291P
26 22,870,530 A G ELOVL3 NM_001192306.1 c73A>G Aac/Gac p.N25D
12 23,298,094 C T FREM2 XM_002691799.5 €9260C > T aGg/aAg p.R3087K
12 23,336,198 G T FREM?2 XM_002691799.5 c6042G>T gaC/gaA p.D2014E
17 71,465,091 T C GGT1 NM_001206214.1 c100T>C Agc/Ggc p.534G

28 4,036,781 G A GNPAT NM_001103286.1 c1462G> A Gtt/Att p.V488I

X 37,080,066 C T L1CAM NM_001192435.1 €2722C>T Gga/Agg p.GI08R
28 8475854 A C LYST NM_174020.2 €.5337A>C ttA/ttC p.L1779F
18 14,705,518 T C MCIR NM_174108.2 c143T7>C cTg/cCg p.L48P

" 103,981,017 T G NOTCHT XM_024999642.1 c43T>G Aca/Cca p.T15P

3 13,984,639 T C NTRK1 XM_024989930.1 c55T>C Agg/Ggg p.R19G

5 57,353,185 T @ PMEL NM_001080215.2 c18737>C Tgg/Cgg p.W625R
14 429,568 A G RECQL4 NM_001098037.2 c370A>G Acc/Gec p.T124A
14 429,631 T C RECQL4 NM_001098037.2 c433T>C Tca/Cca p.S145P

4 40,075,565 G A SEMA3C NM_001101082.1 c.718G> A Gtg/Atg p.V240M
3 14,622,613 C G SEMA4A NM_001075440.1 €320C>G aGt/aCt p.S107T
X 133,162,026 G T SHROOM2 XM_002700461.5 c3176G>T gCc/gAc p.A1059D
X 133,162,029 G A SHROOM?2 XM_002700461.5 c3173G>A tCc/tTc p.S1058F

Chr Bos taurus reference chromosome; Chr_pos position on the bovine chromosome (in bp); Ref reference nucleotide; Alt alternative nucleotide; Gene gene name;
Acc.No. accession number of the NCBI reference sequence; SNP polymorphism in the NCBI reference sequence; Codon codon with SNP in capital letters; aa subst.
amino acid substitution (according to the protein_id given in the NCBI reference sequence)
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Table 2 Association between phenotype and MCIR genotype
in 102 examined individuals from 12 locations

MC1R-SNP (c.143 T > C) genotype

Coat colour T TC CcC
WT/dark pigmented 69 11 0
White 0 0 22

Indicated are the number of animals with the respective coat colour and
genotype; WT wildtype; Fisher's exact test: P = 8.472)

Discussion

Although a complete genome sequence of Dama dama
is not available, the high degree of sequence conserva-
tion, even of microsatellites, between cervides and other
ungulates, especially cattle [22, 23] led us to attempt to
map genomic fallow deer sequences to the bovine refer-
ence genome. Indeed, fallow deer sequences homologous
to 86% of the bovine genome were mapped, revealing 11
million SNPs. We were confident that the coding se-
quence regions in particular would show a good match
between fallow deer and bovine genome. In a study on
white coat colour in Cervus elaphus [19] 82% of Cervus
sequences were mapped based on the well-established
bovine genome (UMD 3.1, Ensembl release 94, NCBI
assembly accession GCA_000003055.3), as compared to
92% when mapped to the Cervus elaphus genome
CeElal.0 [24]. Since the TYR gene that is responsible for
the white phenotype in the studied red deer population
was not annotated in CerELal.0, there was no chance
that it would be detected based on the Cervus reference
sequence. This is not unexpected, since 21,880 genes are
annotated for the bovine genome in contrast to 19,368
for the genome of Cervus elaphus. Therefore, we decided
to use the better annotated bovine genome UMD 3.1. In
fact, more than 12,000 SNPs were extracted after variant
calling as a subset based on a list of colour genes (Inter-
national Federation of Pigment Cell Societies; http://
www.ifpcs.org/albinism/). Nineteen SNPs in sixteen can-
didate genes corresponded exactly to the requirements
of a homozygous white hind and its heterozygous brown
calf. However, only one SNP, located in the MCIR gene
showed perfect genotype-phenotype association in the
entire cohort with 22 white and 80 brown individuals,
collected from 12 locations with unrelated fallow deer
populations, mostly in Germany. However, we have to
admit that the method used would probably not have
found all types of variants, especially those in gene re-
gions with lower agreement between Dama dama and
Bos taurus, e.g. in non-coding regions. Furthermore,
indels and large structural variants would not have been
detected by our approach.

The MCIR gene is involved in a huge network of col-
ouring genes (for overview see [25]), and thus associated
with a broad spectrum of colour variation in human
[26], mouse [27] and several other mammalian and bird
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species, such as horses [28], foxes [29], dogs [30], rabbits
[31], chicken [32], alpacas [33], buffalos [20], sheep [34,
35], goats [36], and cattle [37, 38]. Variants were de-
scribed together with the prevention of the white winter
coat in foxes [39] and increased pigmentation in rein-
deer [40] and other species (overview by [41]). However,
besides oculocutaneous albinism type 2 in humans [26],
associations of MCIR variants with white coat colour
are rare. They were found in black bears [42], white leg-
horn chicken [43], martens [44], mice [45], Huskies [46]
and the Arabian camel [47]. MCIR has never been
associated with colour variation or dilution in cervids.
MCIR is a seven-pass transmembrane G protein [26]
coupled receptor that is especially located on the surface
of melanocytes. MCIR is activated by the a-melanocyte
stimulating hormone (a-MSH) and competitively
inhibited by the agouti signalling protein (ASIP). Activa-
tion stimulates an adenylate cyclase and increases the
amount of cAMP, activating the transcription of
enzymes involved in eumelanin production [26], e.g.
TYRP1 and TYR, the key enzymes in melanin biosyn-
thesis [2, 48]. The loss of function of MCIR because of
sequence variation affects the ability to generate cAMP
and leads to minimal production of eumelanin in mela-
nocytes. Variation within the transmembrane helices can
result in loss of function. The variation which is respon-
sible for white coat colour in fallow deer was detected at
nucleotide 143 (c.143 T > C) that leads to an amino acid
exchange from leucine to proline (p.L48P) in the present
study. This substitution is located within the helix struc-
ture of the first transmembrane motif, where several
non-synonymous variants have been described in
humans (V38M, S41F, V51A) [49], 140T [50], and V60L
[51] (for overview see [26]). These variants resulted in
reduced cell surface expression of MCIR as a conse-
quence of retention in the endoplasmic reticulum
(V38M, S41F, V51A) and/or with a decreased coupling
to adenylate cyclase (V60L). Although the variant of
the fallow deer has never been described before, it is
closely related to the above-described human variants.
While leucine, the wild-type amino acid is a typical
component of a-helices, introduction of a proline
residue into similar membrane-bound proteins was
shown to alter the gross secondary structure from o-
helix to 83-sheet-like [52], which could be detrimental
to the structure. Because of its very rigid structure,
which bends the main chain of the protein in a char-
acteristic way, proline is a well-known breaker of
secondary structures [53, 54]. In contrast to proline,
leucine is found with above-average frequency in helix
structures and is very rarely replaced by other amino
acids, an indication of the important structural func-
tion this amino acid occupies there [54]. Further
studies are necessary to prove the functional
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significance of the p.L48P variant in white fallow
deer, especially in populations from other parts of the
world.

Conclusion

The genomic sequencing of a white hind and her brown
calf led to the identification of a non-synonymous vari-
ant with exchange of a leucine residue at position 48 of
the melanocortin 1 receptor by proline as a likely cause
of dilution of the coat colour. This variant was detected
using a list of colour genes of the International Feder-
ation of Pigment Cell Societies (http://www.ifpcs.org/al-
binism/). Genetic testing confirmed the expected
genotypes in all 22 white and 80 brown animals from 12
different locations examined. The study showed that
14% of the brown animals carry the white allele. This
genetic test provides a simple and reliable way of conser-
vation and management for the white animals.

Methods

Fallow deer

Samples of fallow deer were collected from 12 loca-
tions. Four locations were hunting grounds and eight
locations were game parks or game farms (Table 3).
The different locations contributed between 1 and 29
animals, 21.6% of which had a white coat colour.
Samples were taken from existing antlers and frozen
tissue samples provided either by official game parks
or by those authorised to practise hunting. No ani-
mals were killed specifically for the study. No live
animals were sampled and no dropping antlers were
sought or collected for the study.

Table 3 Origin of fallow deer samples
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The phenotype

The white fallow deer were not albinos, but the coat
colour was diluted. There were no noticeable differences
in the degree of dilution. The eyes and claws were nor-
mally pigmented or slightly lightened. Apart from the
coat and eye colour, the white animals did not differ
from the brown animals in size, weight or habitus.

Sample collection

Samples from pigmented (normal brown and dark
pigmented, n = 80) and white (n =22) fallow deer were
collected over the 2017/2018 seasons. Two female ani-
mals (one white adult hind with its brown calf) were
available for Next Generation Sequencing. All samples
were accompanied with information about age, weight,
colour, and hunting ground.

Samples from antlers were taken as drill core
samples from the base and stored dry at ambient
temperature. Tissue samples from meat were frozen
at —20°C until use.

DNA extraction
Genomic DNA was extracted from tissue samples and
antler drill cores with the Instant Virus RNA Kit (Analy-
tik Jena, Germany). Antler drill cores (0.1 to 0.3 g) were
treated in a bead mill (MM200, Retsch, Germany) at a
frequency of 25 Hz for 2 min. Tissue samples were sus-
pended in 450 pl of lysis buffer and subsequently treated
in the same way as the antler drill cores. All following
steps were performed according to the manufacturer’s
instructions. The extracted DNA was eluted with 60 pl
of RNAse-free water.

DNA concentration was measured photometrically with
the Nanodrop 2000 spectrophotometer (Thermofisher,

Location n Origin Coat colour (n)
WT/dark pigmented white

Edersee, Germany, 52957399, 12.851258 13 G 10 3
Eulbach, Germany, 49.682958, 9.067647 22 G 19 2
Griebelschied, Germany, 49.801959, 7393967 2 G 0 2
Hanstedt, Germany, 53.238308, 10.046076 6 G 1 5
Murowana, Poland, 52.406374, 16.9251681 1 H 1 0
Weishauswald, Germany, 49.771825, 6.629594 6 G 5 1
Mdritz, Germany, 53.473235, 12.798000 3 H 2 1
Neuruppin, Germany, 52.957399, 12.851258 13 H 13 0
Pleizenhausen, Germany, 50.015735, 7.564419 1 G 0 1
Sababurg, Germany, 51.545171, 9.532297 29 G 24 5
Weilburg, Germany, 50.488850, 8.332017 2 G 2 0
Wolfshagen, Germany, 54.191712, 12.821344 4 H 3 1
Total number of animals 102 80 22

Location region, country, latitude; altitude; n number of samples; Origin game park (G) or hunting ground (H); WT wildtype brown
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USA) and the Qubit 2 system (Qubit dsDNA br assay kit
and Qubit dsDNA hs assay kit, Thermofisher, USA).

Next generation sequencing

DNA samples of one white female and it's brown off-
spring were used for library preparation with the TruSeq
DNA PCR-free sample preparation kit (Illumina, USA).
The protocol was adjusted to receive fragments with a
350bp insert size according to the manufacturer’s
instructions. Quantification and quality control of the
libraries was carried out through qPCR with the Kapa
Library Quantification Kit (Kapa Biosystems, USA) and
high-resolution electrophoresis with the Bioanalyzer
2100 (Agilent Genomics, USA). Paired-end sequencing
with a read length of 2x 126 bp was performed on a
HiSeq2500 (Illumina, USA) with HiSeq v4 chemistry.

Raw data were demultiplexed and .fastq files were gen-
erated with bcl2fastq Conversion Software (Illumina,
USA). The quality of the sequence reads was observed
by FastQC (http://www.bioinformatics.babraham.ac.uk/
projects/fastqc/).

All programs used in further processing of raw reads
were embedded in python scripts to connect the differ-
ent steps and programs.

In a first step raw sequences were converted from a
base call file (bcl) to fastq files and mixed probes were
demultiplexed  through the program  bcl2fastq
Conversion Software from Illumina (http://emea.sup-
port.illumina.com/downloads/bcl2fastq_conversion_soft-
ware_184.html?langsel=/de/). Because a Cervus elaphus
reference genome was not available at the time of se-
quencing, resulting reads were aligned to the reference
sequence of the bovine genome (UMD 3.1 [55]) using
the BWA-MEM algorithm (https://arxiv.org/abs/1303.3
997). After processing of data, single files were merged
and converted from the SAM to the BAM format with
SAMtools>®. Duplicated reads were marked by the PICA
RDtools command MarkDuplicates (https://github.com/
broadinstitute/picard/).

Variant calling, annotation and identification of candidate
variants

To identify single nucleotide polymorphisms (SNPs) in
the annotated reads of the two sequenced fallow deer
samples, we used the mpileup algorhithm implemented in
SAMtools [56]. With the filter algorithm from PICA
RDtools (https://github.com/broadinstitute/picard/) called
variants were filtered by excluding all SNPs within 3 base
pairs of an INDEL and with lower QUAL score.

For the functional annotation of each called SNP
we adapted the VariantEffectPredictor (VEP) from
Ensemble [57].

Furthermore, we extracted a subset of SNPs based on
a list of colour genes detected in mice, humans and
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zebrafish (International Federation of Pigment Cell Soci-
eties; http://www.ifpcs.org/albinism/). The resulting VEP
annotated files containing only genomic regions coding
for coat colour were checked on the basis of a recessive
genetic inheritance model for non-synonymous impacts
of the variants.

Validation of candidate SNPs

SNPs detected by NGS were validated by Sanger sequen-
cing (LGC Genomics, Germany). For this purpose, re-
gions including the candidate SNPs were PCR amplified
and sequenced. PCR primers were designed from the
NGS data in combination with data from the Bos taurus
reference genome.

Supplementary Information
The online version contains supplementary material available at https://doi.
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variants.
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