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Bioinformatic screening for candidate
biomarkers and their prognostic values in
endometrial cancer
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Abstract

Background: Endometrial cancer is a common gynecological cancer with annually increasing incidence worldwide.
However, the biomarkers that provide prognosis and progression for this disease remain elusive.

Results: Two eligible human endometrial cancer datasets (GSE17025 and GSE25405) were selected for the study. A
total of 520 differentially expressed mRNAs and 30 differentially expressed miRNAs were identified. These mRNAs
were mainly enriched in cell cycle, skeletal system development, vasculature development, oocyte maturation, and
oocyte meiosis signalling pathways. A total of 160 pairs of differentially expressed miRNAs and mRNAs, including 22
differentially expressed miRNAs and 71 overlapping differentially expressed mRNAs, were validated in endometrial
cancer samples using starBase v2.0 project. The prognosis analysis revealed that Cyclin E1 (CCNE1, one of the 82
hub genes, which correlated with hsa-miR-195 and hsa-miR-424) was significantly linked to a worse overall survival
in endometrial cancer patients.

Conclusions: The hub genes and differentially expressed miRNAs identified in this study might be used as
prognostic biomarkers for endometrial cancer and molecular targets for its treatment.

Keywords: Endometrial cancer, Differentially expressed genes, Differentially expressed miRNAs, Functional
enrichment analysis, Protein-protein interaction, Survival analysis

Background
Endometrial cancer (EC), that is, uterine corpus endo-
metrial carcinoma (UCEC), originates from the epi-
thelial malignant tumours in endometrium. With an
increase in obesity and an aging population, the inci-
dence and mortality rates of EC are increasing in de-
veloped countries [1]. According to the latest
statistics of the American Cancer Society [2], over 61,
000 cases were estimated to be diagnosed with EC in
2017. At present, advanced stage EC still accounts for

20–30% of incidents, and the disease relapse is associ-
ated with a poor prognosis.
Currently, there are no known reliable diagnostic

and prognostic biomarkers for EC. Cancer antigen
125 (CA125), being most frequently used as a bio-
marker for ovarian cancer, has some diagnostic/prog-
nostic value in EC [3]. However, CA125 level is
elevated in a number of physiological and pathological
conditions, such as age [4, 5], pregnancy [6], menstru-
ation [4, 6], and in gynaecological and non-
gynaecological disorders, such as endometriosis [6],
benign ovarian cysts [6], pelvic inflammatory disease
[6], peritonitis [6], pancreatitis [6], and pneumonia
[6]. Human epididymis protein 4 (HE4) also has some
diagnosis/prognosis value in EC [7]. Similar to the
high expression of CA125, HE4 level is also elevated
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in many physiological and non-gynaecological condi-
tions, such as age [8], menopausal status [8], Body
Mass Index [8], smoking status [8], creatine levels [8],
pulmonary adenocarcinoma [9], chronic kidney dis-
ease [7], renal failure [10], and kidney fibrosis [11].
Due to these factors reduce the clinical value of the

existing biomarkers in the progress and prognosis of EC,
it is crucial to discover new reliable biomarkers as well
as to unravel the underlying molecular mechanisms of
the EC progression.

Results
Identification of DEGs and DEMs
A total of 1961 DEGs and 149 DEMs were identified
from GSE17025 and GSE25405, respectively; 2339
DEGs and 205 DEMs were identified from the mRNA
and miRNA data of uterine corpus endometrial car-
cinoma in TCGA (named TCGA-UCEC and TCGA-
UCEC_miRNA, respectively); 520 common DEGs and
30 common DEMs were screened out with Venny
2.1.0(http://bioinfogp.cnb.csic.es/tools/venny/index.
html) [12], respectively (Fig. 1a, Fig. 1b). There were
212 upregulated genes and 308 downregulated genes,
as well as 15 upregulated and 15 downregulated miR-
NAs in EC tissues compared with NE tissues, respect-
ively (Table 1, Table 2).

Functional and pathway enrichment analysis
The functional and pathway enrichment analyses of
DEGs were conducted with DAVID. The upregulated
genes were mainly enriched in these biological processes,
which were cell cycle, cell division, and DNA replication
signalling pathways, while downregulated genes were
mainly enriched in skeletal system development, vascula-
ture development, and cell adhesion signalling pathways
(Table 3). Moreover, three KEGG pathways were
enriched in upregulated genes, including cell cycle, oo-
cyte maturation, and oocyte meiosis signalling pathways
(Table 3). There were no KEGG pathways enriched in
downregulated genes.

Construction of PPI network and module analysis
A PPI network consisting of 287 nodes and 1840 edges
was constructed, which included 212 upregulated and
308 downregulated genes (Fig. 2). Next, 82 genes were
screened out as hub genes (Degree of interaction ≥10
were selected as the threshold) [13], there were close
correlations among hub genes (Fig. 3, Additional file 1).
After analysing the network with the MCODE tool in
Cytoscape software, an important module was obtained,
including 50 nodes and 1082 edges (Fig. 4). Functional
enrichment analyses of biological processes with regard
to this module showed that these genes were enriched in
cell cycle, cell division, and DNA replication signalling

Fig. 1 a: Venn diagram of the differentially expressed genes among these three datasets. b: Venn diagram of the differentially expressed miRNAs
between two datasets. TCGA-UCEC: the mRNA data of uterine corpus endometrial carcinoma in the Cancer Genome Atlas, TCGA-UCEC_miRNA:
the miRNA data of uterine corpus endometrial carcinoma in the Cancer Genome Atlas, TG-miRNA: the target gene of differentially
expressed miRNA
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pathways (Table 4). Three KEGG analysis showed an en-
richment in cell cycle, oocyte meiosis, and oocyte matur-
ation signalling pathways (Table 4).

Analysis of miRNA-mRNA regulatory network
Thirty commonly identified DEMs were screened out
from GSE25405 and TCGA-UCEC_miRNA, including
15 upregulated and 15 downregulated miRNAs
(Table 2). 6865 TG-miRNAs were checked in the
miRecords database, of which 199 were validated in
520 common DEGs (Fig. 1a). These 199 commonly
identified DEGs and 30 commonly identified DEMs
were used to construct a miRNA-mRNA network. In
patients with EC, 160 pairs of DEMs-DEGs relation-
ships with reverse associated expression were con-
firmed using starBase v2.0 project, including 22
DEMs and 71 overlapping DEGs (Fig. 5, Add-
itional file 2). In the network, hsa-miR-200b, hsa-
miR-200c, hsa-miR-429, hsa-miR-424, hsa-miR-195,
hsa-miR-653, and hsa-miR-141 showed a higher de-
gree of interaction (≥ 5, Table 5).

Survival analysis
The prognostic value of 82 hub genes was assessed by
OncoLnc. We found that high mRNA expression of
BUB1, TOP2A, CDCA8, TTK, ASPM, UBE2C, BIRC5,
HJURP, CENPA, MCM10, FOXM1, SPAG5, EXO1,
ESPL1, OIP5, MCM4, CDC25C, DEPDC1, KIF18B,
ERCC6L, CKAP2L, ATAD2, TK1, CCNF, E2F1, and
CCNE1, as well as low mRNA expression of MYC was
associated with the significantly worse overall survival
for EC patients (data not shown). What makes us inter-
esting was that, CCNE1 was also identified as a target
gene of hsa-miR-195 and hsa-miR-424, which were iden-
tified in our DEM analysis (Fig. 6, Fig. 7).

Discussion
In recent years, although clinical medical scientists have
made significant progress in the treatment of EC with
surgery and chemotherapy, the incidence and mortality
rate of EC is still rising [14]. It is necessary to further
understand the etiology and underlying mechanism of
the EC progression to improve the prognosis of EC.

Table 1 Top 10 DEGs in EC tissues compared with NE tissues
according to the data from TCGA database

DEG logFC P-value adj. P-value

upregulated genes

SFN 4.465258403 5.76E-42 2.15E-40

PRAME 4.193768196 5.79E-69 7.66E-67

MYBL2 4.109297769 2.84E-74 4.67E-72

UBE2C 4.074765041 1.71E-69 2.33E-67

CDC20 3.919322957 1.25E-78 2.67E-76

AQP5 3.427650505 2.06E-18 2.18E-17

PRSS8 3.413404932 1.96E-49 1.06E-47

TK1 3.400033651 3.60E-77 6.98E-75

PI3 3.370250122 7.80E-14 5.87E-13

TPX2 3.308872927 1.19E-58 9.97E-57

downregulated genes

DES −6.619094047 8.36E-54 5.54E-52

MYH11 −5.635290069 6.17E-75 1.05E-72

CNN1 − 5.55734654 5.08E-64 5.45E-62

ACTG2 −4.902138932 4.13E-50 2.32E-48

LMOD1 −4.795641474 4.82E-86 1.42E-83

OGN −4.663558704 9.95E-120 1.55E-116

DPT −4.427179281 6.84E-99 3.98E-96

SPARCL1 −4.386222474 1.33E-70 1.90E-68

ZCCHC12 −4.328794652 2.64E-68 3.40E-66

SFRP4 −4.266562157 4.62E-26 7.95E-25

DEGs differentially expressed genes, EC endometrial cancer, NE normal
endometrium, FC fold-change; adj. P-value, adjusted P-value; adjusted P-value
was obtained by correcting P-value using the ‘Benjamini-Horchberg’ method

Table 2 Top 10 DEMs in EC tissues compared with NE tissues
according to the data from GEO database

miRNA logFC P-value adj. P-value

upregulated miRNA

hsa-miR-205 5.717071419 8.28E-10 3.45E-07

hsa-miR-135b 3.002833732 6.43E-05 1.87E-03

hsa-miR-182 2.827333932 2.90E-06 2.00E-04

hsa-miR-183 2.705891835 2.87E-05 1.06E-03

hsa-miR-429 2.437603498 9.52E-07 9.11E-05

hsa-miR-200b 2.244848862 1.74E-06 1.37E-04

hsa-miR-96 2.195969063 7.78E-05 2.14E-03

hsa-miR-200a 1.973216466 4.25E-05 1.43E-03

hsa-miR-202 1.943991213 4.19E-03 4.31E-02

hsa-miR-210 1.715073494 1.94E-04 3.85E-03

downregulated miRNA

hsa-miR-424 −4.875026249 1.77E-13 3.59E-10

hsa-miR-143 −4.140227835 5.97E-07 6.07E-05

hsa-miR-133b −4.081321667 4.19E-06 2.54E-04

hsa-miR-376c −3.636752313 9.60E-05 2.41E-03

hsa-miR-195 −3.523216268 1.67E-07 2.57E-05

hsa-miR-204 −3.51217031 7.22E-04 1.10E-02

hsa-miR-145 −3.493087645 1.82E-05 7.61E-04

hsa-miR-411 −3.39771373 3.84E-06 2.40E-04

hsa-miR-381 −3.035325968 4.20E-05 1.41E-03

hsa-miR-379 −2.971031318 2.79E-06 1.95E-04

DEMs, differentially expressed miRNAs, EC endometrial cancer, NE normal
endometrium, miRNA or miR, microRNA, FC, fold-change; adj. P-value, adjusted
P-value; adjusted P-value was obtained by correcting P-value using the
‘Benjamini-Horchberg’ method
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In this study, by integrating GSE17025 and TCGA-
UCEC datasets, 520 common DEGs were screened out
in EC tissues compared with NE tissues. These 520 com-
mon DEGs were composed of 212 upregulated genes
and 308 downregulated genes. The upregulated DEGs,
such signalling pathways, were mainly enriched as cell
cycle, cell division, and DNA replication. Skeletal system
development, vasculature development, and cell adhe-
sion signalling pathways were enriched among downreg-
ulated DEGs. Furthermore, PPI network was built for 82
hub genes. Survival association analysis of these 82 hub
genes showed poor prognosis associated with 26 upregu-
lated genes and one downregulated gene for patients
with EC. Similarly, 30 common DEMs were analysed
from GSE25405 and TCGA-UCEC_miRNA datasets.
After integrating 6865 TG-miRNAs with these 520 com-
mon DEGs, 71 overlapping DEGs were screened that
showed close correlations with 22 common DEMs in EC
(Fig. 5, Additional file 2). Moreover, high mRNA expres-
sion of CCNE1 (one of the 82 hub genes, which was cor-
related with hsa-miR-195 and hsa-miR-424) was
significantly correlated with worse overall survival in EC
patients.
miRNAs are endogenous small non-coding RNAs,

which can inhibit gene expression by mRNA

degradation/destabilization or through impairing transla-
tion [15, 16]. The abnormal expression of miRNAs oc-
curs in a variety of tumours and is often associated with
altered tumour characteristics, such as changes in
tumour cell survival, proliferation, and invasion [17].
In this study, 30 common DEMs were compared be-

tween EC and NE tissues, such as hsa-miR-200b, hsa-
miR-200c, hsa-miR-429, hsa-miR-141, hsa-miR-424, hsa-
miR-195, and hsa-miR-653. The microRNA-200 (miR-
200) family consists of miR-200a, miR-200b, miR-200c,
miR-429, and miR-141, which all have the same seed se-
quence and homologous targets. The expression of hsa-
miR-200b is upregulated in many malignant tumours
[18–20], and its role in the inhibition of mesenchymal
characteristics and metastasis has been revealed in pros-
tate cancer, gastric carcinoma, and hepatocellular carcin-
oma via regulating ZEB1 expression or directly targeting
ZEB2, or via Rho/ROCK signalling pathway [21–23].
Our study outcomes suggested that hsa-miR-200b was
also upregulated in EC, and the observation was consist-
ent with the previous study [24]. Hsa-miR-200c has been
widely investigated during the last few years. There have
been numerous studies demonstrating the association
between an aberrant expression level of miR-200c and
the prognosis of various human malignancies, such as

Table 3 Top 10 GO terms of biological processes and significant KEGG pathways of upregulated and downregulated DEGs for EC
tissues compared with NE tissues

Term Description Count P-Value FDR

Upregulated DEGs

GO:0022403 cell cycle phase 47 1.16E-30 1.93E-27

GO:0000279 M phase 42 2.96E-29 4.94E-26

GO:0000278 mitotic cell cycle 42 3.27E-27 5.44E-24

GO:0000280 nuclear division 34 3.43E-26 5.71E-23

GO:0007067 mitosis 34 3.43E-26 5.71E-23

GO:0000087 M phase of mitotic cell cycle 34 6.25E-26 1.04E-22

GO:0022402 cell cycle process 48 9.63E-26 1.60E-22

GO:0048285 organelle fission 34 1.30E-25 2.16E-22

GO:0007049 cell cycle 53 3.71E-24 6.18E-21

GO:0051301 cell division 33 5.63E-21 9.38E-18

KEGG pathway

hsa04110 Cell cycle 18 1.70E-11 1.87E-08

hsa04914 Progesterone-mediated oocyte maturation 10 1.30E-05 1.42E-02

hsa04114 oocyte meiosis 11 1.48E-05 1.62E-02

Downregulated DEGs

GO:0001501 skeletal system development 21 2.58E-07 4.35E-04

GO:0001944 vasculature development 16 1.53E-05 2.57E-02

GO:0007155 cell adhesion 28 2.67E-05 4.50E-02

GO:0022610 biological adhesion 28 2.74E-05 4.61E-02

GO gene ontology, KEGG Kyoto Encyclopedia of Genes and Genomes, DEGs differentially expressed genes, EC endometrial cancer, NE normal endometrium, FDR
false discovery rate
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breast cancer [18, 25, 26], prostate cancer [27], ovarian
cancer [28], and endometrial cancer [29]. Some of these
studies verified the anti-oncogenic role of miR-200c in
certain cancer types, indicating the potential correlation
of elevated expression levels of miR-200c and superior
prognosis [26, 28, 29]. In contrast, other studies have
suggested that miR-200c serves as an oncogene [18, 25,
27]. Nevertheless, these findings suggest that miR-200c
is a potential biomarker for cancer prognosis. Our re-
sults also suggested that hsa-miR-200c was upregulated,
and the observation was consistent with the previous
study [29]. Recent reports have shown that hsa-miR-429
expression is frequently upregulated in several cancers

and may function as an oncogene [30, 31] in cancers,
such as endometrial carcinoma [30], as observed in this
study. One study showed that upregulation of hsa-miR-
429 is associated with a decrease in overall survival of
serous ovarian cancer [32]; in contrast, other studies
have shown that hsa-miR-429 was downregulated in
some malignant tumours and had tumour-suppressor
function [33, 34]. These results indicate that hsa-miR-
429 plays different (even opposite) roles in tumorigenesis
and cancer progression in different tumours. Hsa-miR-
141 is also an important member of the miR-200 family,
several previous studies have shown that has-miR-141
was involved in prognosis of cancer [35–37].

Fig. 2 Protein-protein interaction network of the differentially expressed genes in endometrial cancer tissues compared with normal
endometrium tissues. Green and red nodes represent upregulated and downregulated genes, respectively. The edges/lines stand for the
regulatory association between nodes
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Some previous studies reported that hsa-miR-424
was downregulated and could have a tumour suppres-
sor role in some cancers [38–40]. In line with these
observations, our present study also showed that hsa-
miR-424 was downregulated [40]. Hsa-miR-195 is a
member of the miR-15a, −15b, − 16, − 195, − 424,
and − 497 families, which is involved in the occur-
rence and developmental progress of many malignant
tumours and regulation of malignant biological behav-
iours [40–43]. In our study, hsa-miR-195 in EC tis-
sues showed lower expression levels compared with
NE tissues, which was consistent with the previous
study [42]. So far, there are only few reports on the
role of hsa-miR-653 in the malignant biological be-
haviour of tumours.
Based on our findings, we speculates that hsa-miR-

200b, hsa-miR-200c, hsa-miR-429, hsa-miR-141, hsa-
miR-424, hsa-miR-195, and hsa-miR-653 may play

important roles in biological behavior of EC by multiple
pathways.
CCNE1, that is Cyclin E1, belongs to the cyclin family

which, through association with cyclin-dependent kinase
2, controls cell cycle progression from G1 to S phase
[44]. Previous studies have shown that the upregulation
of CCNE1 could contribute to cancer development or
tumorigenesis in many cancers [45–50], and CCNE1
could serve as a reliable independent prognostic marker
[49, 50]. miRNAs from multiple families have been iden-
tified to target CCNE1 in a number of malignant tu-
mours, such as hepatocellular carcinoma [51],
osteosarcoma [52], cervical cancer [53], and bladder can-
cer [54]. In the present study, survival analysis of the
hub genes related to DEMs showed that high expression
of CCNE1 could indicate poor prognosis in EC patients.
There are some defects in this article. Such as, the

overlapped miRNAs were about only 1/4 to 1/5 between

Fig. 3 Protein-protein interaction network of hub genes of the differentially expressed genes in endometrial cancer tissues compared with
normal endometrium tissues. Green and red nodes represent upregulated and downregulated genes, respectively. The edges/lines stand for the
regulatory association between nodes
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GSE25405 and TCGA-miRNA, and some of the findings
need further experimental validation in future studies.
With regard to the ratio of the overlapped miRNAs is

low, the following observations may explain the possible
reasons. Firstly, the ethnic origins of the chip and RNA-

seq samples were different. The GSE25405 data was
composed of Asians, while the TCGA-miRNA data was
mainly composed of European Americans and African
Americans. Secondly, the sample sizes were also differ-
ent; while GSE25405 included 48 samples (41

Fig. 4 Demonstration of the important module by cytoscape. The edges/lines stand for interaction relationship between nodes

Table 4 Top 10 GO terms of biological processes and significant KEGG pathways of the DEGs in module

Term Description Count P-value FDR

Biological processes

GO:0000279 M phase 32 8.12E-40 1.14E-36

GO:0022403 cell cycle phase 32 1.24E-36 1.75E-33

GO:0000278 mitotic cell cycle 31 2.61E-36 3.67E-33

GO:0000280 nuclear division 27 2.86E-35 4.02E-32

GO:0007067 mitosis 27 2.86E-35 4.02E-32

GO:0000087 M phase of mitotic cell cycle 27 4.67E-35 6.57E-32

GO:0048285 organelle fission 27 8.52E-35 1.20E-31

GO:0022402 cell cycle process 33 4.25E-34 5.97E-31

GO:0007049 cell cycle 35 6.14E-33 8.63E-30

GO:0051301 cell division 27 7.85E-32 1.10E-28

KEGG pathway

hsa04110 Cell cycle 13 4.76E-17 2.96E-14

hsa04114 oocyte meiosis 9 4.14E-10 2.58E-07

hsa04914 Progesterone-mediated oocyte maturation 7 1.37E-07 8.55E-05

GO gene ontology, KEGG Kyoto Encyclopedia of Genes and Genomes, DEGs differentially expressed genes, FDR false discovery rate
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endometrial cancer tissue samples, 7 normal endometrial
tissue samples), the TCGA data sample size was larger
and (after the author has screened and processed the
relevant data) a total of 572 samples were included (539
tissue samples from endometrial cancer patients and 33
normal controls). Last but not least, the efficacy of
RNA-seq detection and chip detection were different. It
is well known that when detecting genes with higher
abundance, the results of RNA-seq and chip may be
similar, however, when detecting genes with lower abun-
dance, RNA-seq can more effectively capture relevant
information. As for the latter topic, we believe that the
outcomes of the present study provide credible base for
future research. For example, verifying the expression of

Fig. 5 The miRNA-mRNA regulatory network. Green and red nodes stand for upregulation and downregulation, respectively. The ellipses
represent genes and the triangles represent miRNAs

Table 5 Top 7 miRNAs with the highest degree of interaction
in the miRNA-mRNA interactions network (Degree of interaction
≥5)

Node Degree of interaction

hsa-miR-200b 10

hsa-miR-200c 10

hsa-miR-429 9

hsa-miR-424 6

hsa-miR-195 6

hsa-miR-653 6

hsa-miR-141 5

miR microRNA
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Fig. 6 Overall survival analysis of CCNE1 expression with prognosis of endometrial cancer patients (Logrank p-value = 0.000157). Based on the
median expression level of CCNE1, the patients with EC were divided into two (high vs. low) groups

Fig. 7 The correlated expression of CCNE1 and hsa-miR-195-5p (hsa-miR-195) in 538 patients with endometrial cancer. The correlation coefficients
− 0.355 with p-value = 1.93e-17 indicated that CCNE1 and hsa-miR-195 expression levels were correlated with each other; data source: starBase
v3.0 project
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selected miRNA (such as, miR-195 and miR-424.) in
endometrial cancer cell lines and endometrial cancer tis-
sue samples through PCR experiments, and in animal
models may shed light on the role of these miRNAs in
affecting the malignant biological process of endometrial
cancer. Further, verifying the differential expression of
miRNA in a large number of clinical samples and to
analyse its correlation with clinical parameters (such as
tumour clinical stage, pathological stage classification,
recurrence, metastasis, and prognosis.) will help to de-
termine the diagnosis and prognostic value of these
miRNA in endometrial cancer patients. For another ex-
ample, one or more hub genes can be selected to verify
their mRNA and protein expression in endometrial can-
cer cell lines and endometrial cancer tissue samples.
And then study the effect of genes, which were knocked
out or overexpressed or mutated, on the biological
process of endometrial cancer cell lines (such as, tumour
cell proliferation, transformation, migration and inva-
sion, blood vessel formation, and energy metabolism.)
and its participation in molecular mechanism of action /
signal transmission research. What’s more, to establish a
subcutaneous transplanted tumour model, to introduce
the target gene into the animal body, to observe the ef-
fect on tumour growth in the body, and further analyse
the molecular mechanism or signal transmission of the
target gene to provide potential targets for tumour gene
therapy. Lastly, to verify the different expression of genes
in a large number of clinical samples and analyse its cor-
relation with clinical parameters to determine the diag-
nosis and prognostic value of genes in endometrial
cancer patients.
Next, our clinical research team will select some miR-

NAs to verify the relationship between miRNAs and tar-
get genes through clinical experiments and their value in
the diagnosis and prognosis of endometrial cancer
patients.

Conclusions
Based on bioinformatics analyses of EC-related micro-
array data in the GEO database and clinical data related
to EC in TCGA database, we identified 27 hub genes
(BUB1, TOP2A, CDCA8, TTK, ASPM, UBE2C, BIRC5,
HJURP, CENPA, MCM10, FOXM1, SPAG5, EXO1,
ESPL1, OIP5, MCM4, CDC25C, DEPDC1, KIF18B,
ERCC6L, CKAP2L, ATAD2, TK1, CCNF, E2F1, CCNE1,
and MYC) that were associated with poor prognosis in
EC patients. Further, seven miRNAs (hsa-miR-200b,
hsa-miR-200c, hsa-miR-429, hsa-miR-141, hsa-miR-424,
hsa-miR-195, and hsa-miR-653) were observed to par-
ticipate in biological behaviour of EC. Further research
is warranted to confirm the clinical implications of our
findings.

Methods
Microarray expression data
The mRNA and miRNA expression data of the
GSE17025 and GSE25405 datasets were respectively
downloaded from the GEO database (https://www.ncbi.
nlm.nih.gov/geo/). The mRNA dataset GSE17025 con-
tained the data from 103 samples, including 91 EC tissue
samples and 12 normal endometrium (NE) samples.
mRNA expression profiles in this dataset were measured
using the GPL570 [HG.U133_Plus_2] Affymetrix Human
Genome U133 Plus 2.0 Array platform [55]. The miRNA
dataset GSE25405 contained 41 EC tissue samples and 7
NE tissue samples. In this dataset, the miRNA expres-
sion profile was detected using the GPL7731 Agilent-
019118 Human miRNA Microarray 2.0 G4470B
platform.

The RNA-seq data
The mRNA-seq and miRNA-seq data of patients with
UCEC were downloaded from TCGA (www.cancergen-
ome.nih.gov) by the tool named SangerBox (https://
shengxin.ren/softs/Sanger_V1.0.8.zip; accessed June 20,
2019). The mRNA-seq and miRNA-seq datasets con-
tained 544 EC tissue samples, 35 NE tissue samples, and
539 EC tissue samples and 33 NE tissue samples,
respectively.

Identification of DEGs and DEMs
The Limma package (version 3.36.5) in R/Bioconductor
was used to identify differentially expressed genes
(DEGs) and differentially expressed miRNAs (DEMs) be-
tween EC and NE tissue samples [56]. The adjusted P-
value (adj.P-value) was obtained by correcting P-value
using the ‘Benjamini-Hochberg’ method, adj.P-value <
0.05 and |log2 fold change (FC)| > 1 were set as the
threshold value [57]. The original probe-level data in
Series Matrix Files were converted into gene symbol
based on platform annotation files. The expression
values of multiple probes corresponding to the same
gene were selected by the minimum adj.P-value.

Functional and pathway enrichment analysis
The Database for Annotation, Visualization and Inte-
grated Discovery (DAVID, http://david.ncifcrf.gov) facili-
tates users to perform biological analysis from data
collection [58]. Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analyses were conducted with DAVID.
FDR < 0.05 was set as statistically significant.

Construction of PPI network and module analysis
PPI network of DEGs was constructed using STRING
database (version 11.0, https://string-db.org/) and visual-
ized using Cytoscape (version 3.7.1) [59, 60]. The
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parameter was set as medium confidence score ≥ 0.7,
module analyses were conducted using Cytoscape soft-
ware MCODE package with degree cut-off = 2, node
score cut-off = 0.2, max depth = 100 and k-score = 2 [61].
The functional enrichment analyses for these DEGs in
the modules were conducted with DAVID.

Prediction of the target gene of miRNA
The target genes for miRNAs (TG-miRNAs) were pre-
dicted by employing miRecords (http://c1.accurascience.
com/miRecords/), which includes 11 different miRNA
target genes predicted databases [62]. A TG-miRNA can
only be identified when at least four different prediction
databases predict that the gene is a target gene.

Construction of the miRNA-mRNA regulatory network
The intersection of TG-miRNAs and DEGs were consid-
ered to be potentially valuable differentially expressed
target genes. Pearson correlation analysis was then used
in starBase (http://starbase.sysu.edu.cn/) to verify the as-
sociation between these potentially valuable differentially
expressed target genes and DEMs in patients with EC
[63]. These significant differentially expression target
genes and corresponding miRNAs were used to con-
struct a miRNA-mRNA regulatory network using the
Cytoscape software. The Degree of interaction of the
node ≥5, which was defined as a hub miRNA.

Survival analysis of hub genes
The overall survival of patients with EC with regard to
hub genes was calculated using Kaplan-Meier analysis in
OncoLnc (http://www.oncolnc.org/) [64]. The patients
were divided into two groups (high vs. low) according to
the median values of mRNA expression of the hub gene.
The log-rank test was used to examine the significance
of the difference between two groups.
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