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Abstract

Background: To maximize photosynthetic efficiency, plants have evolved a capacity by which leaf area scales
allometrically with leaf mass through interactions with the environment. However, our understanding of genetic
control of this allometric relationship remains limited.

Results: We integrated allometric scaling laws expressed at static and ontogenetic levels into genetic mapping to
identify the quantitative trait loci (QTLs) that mediate how leaf area scales with leaf mass and how such leaf
allometry, under the control of these QTLs, varies as a response to environment change. A major QTL detected by
the static model constantly affects the allometric growth of leaf area vs. leaf mass for the common bean (Phaseolus
vulgaris) in two different environments. The ontogenetic model identified this QTL plus a few other QTLs that
determine developmental trajectories of leaf allometry, whose expression is contingent heavily upon the
environment.

Conclusions: Our results gain new insight into the genetic mechanisms of how plants program their leaf
morphogenesis to adapt to environmental perturbations.
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Background
Leaves play a central role in maintaining plants’ survival,
growth and reproduction through the interception and
transformation of solar energy into chemical energy to
produce photosynthates [1–3]. Plants are equipped with
a capacity to maximize photosynthetic efficiency by
adjusting leaf characteristics such as surface area, mass,
number, size, thickness, and nitrogen content, as well as
their tradeoffs in changing environments [4]. Leaf sur-
face area and leaf mass are two important features
widely used as a proxy for leaf photosynthetic capacity
[5]. Leaf area scales allometrically with leaf mass through
complex interactions with the environments. The ratio

of leaf surface area to leaf mass, i.e. specific leaf area
(SLA), or its reciprocal (leaf mass per area, LMA) is an
informative indicator of how plants adapt to different
environments and how plants evolve new phenotypes
[6–10].
The relationship between leaf mass and leaf area has

been studied in several fields. As to the molecular mech-
anisms, Weraduwage et al. [11] detected CGR (cotton
Golgi-related) -mediated pectin methylesterification that
determines how carbon is allocated into leaf area and
leaf mass through modulating the expansion and posi-
tioning of leaf cells in Arabidopsis thaliana. A model
named Arabidopsis leaf area growth model was designed
to simulate the plant growth process, the emphasis is on
the effect of variation in C partitioning between leaf area
growth and thickening [12]. Although there are studies
that have mapped SLA in specific species [13, 14], our
knowledge of genetic control of this allometric
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relationship of these two traits through genetic mapping
remains scanty.
Several theories have been established through math-

ematical equations to describe the allometric relation-
ship of two different traits, such as leaf area (cm2) and
leaf dry weight (g) [15]. An allometric relationship is
usually expressed by a power equation, expressed as

A ¼ αMβ; ð1aÞ
or,

logA ¼ logαþ β logM; ð1bÞ
where α is the prefactor whose unit is cm2/gβ and β is

the scaling exponent describing how leaf area (A) scales
with leaf mass (M) [8, 16]. Leaf area vs. mass scaling pre-
dicts that SLA increases, stays constant, or decreases
when β < 1.0, = 1.0, or > 1.0, respectively [15, 17–20].
The larger leaves have higher dry mass investment for

per leaf area unit than the smaller ones to provide suffi-
cient mechanical stability to adapt to unfavorable envi-
ronments, as shown by the scaling exponent of leaf area
vs. dry mass less than one (i.e. β < 1). This phenomenon
can be explained by the “diminishing return” hypothesis
(disproportionately smaller gains in total leaf surface
area with increasing leaf mass or overall plant size would
increase the “cost” of harvesting light) [15, 19]. However,
the theoretical model of West, Brown, and Enquist pro-
poses that the scaling exponent should be close to unity
(i.e. β = 1.0) [17, 18] and that this scaling relationship
should be insensitive to environmental changes [16]. In
some cases, the scaling exponent was found to be greater
than one, i.e. β > 1, which can be explained by the “net-
work supply constraint” hypothesis (i.e. biological form
and function can be predicted by the scaling properties
of the vascular networks and the network is area-
preserving across branching generations due to bio-
mechanical constraints) [21]. Allometry as described in
eq. (1) can be understood from static or developmental
perspectives [22, 23]. If both leaf area and leaf mass are
measured among different individuals at the same devel-
opmental stage or time point, it is called a static allom-
etry. Yet, if both are measured on each individual over
different developmental stage or series of time points,
the relationship is called an ontogenetic allometry. Al-
though these two types of allometry represent the out-
come of a single biological process, namely, growth, the
pathways by which they affect growth and the genetic
mechanisms underlying their impact on growth may dif-
fer dramatically [23].
Wu et al. [24] pioneered a statistical model through

genetic mapping that allows for the dissection of the
genetic architecture of static allometry. The model can

be used to identify QTLs that govern allometric relation-
ships; this task can be accomplished through the incorp-
oration of the power eq. (1) into a likelihood framework,
which allows rigorous testing of QTL validity. The
model was later modified for more biologically meaning-
ful interpretations [25–28]. For a more complete ap-
proach, Li et al. [29] proposed a conceptual framework
for mapping ontogenetic allometry by integrating allom-
etry theory and functional mapping, a dynamic model
for QTL mapping [30–32]. This framework allows test-
ing the mode by which a QTL regulates allometric rela-
tionships over developmental time. Both static and
ontogenetic allometry mapping models have been vali-
dated through the analysis of stem height vs. stem diam-
eter growth in poplar and above- vs. below-ground
biomass growth in soybean [25, 29]. Although the rela-
tionship between leaf area and leaf mass has been stud-
ied for decades [7, 14, 33, 34], how the allometric
relationship varies with environmental change has never
been validated by static and ontogenetic allometry map-
ping models simultaneously.
The common bean (Phaseolus vulgaris L.) is a legume

that is widely grown in tropical and subtropical coun-
tries, where it represents an important source of pro-
teins, carbohydrates, dietary fiber, vitamins, minerals,
phytonutrients and antioxidants [35–37]. Numerous
mapping studies have identified QTLs for time-to-
flowering [38], node addition rate [36], and seed traits
[39]. Although a few studies have begun to map leaf
morphological traits in this species [39, 40], the genetic
complexity of the mechanism that control allometric re-
lationship of leaf area and dry weight has not been ex-
plored. The purpose of this study is to elucidate the
genetic architecture of allometric scaling of leaf area
with leaf mass in a recombinant inbred line (RIL) popu-
lation of the common bean grown in two different envi-
ronments, and examine how allometry QTLs change
their expression over environment.

Results
Leaf area scales Allometrically with leaf mass in the RI
family
Plots of leaf area against leaf mass show that these char-
acters follow the allometric scaling law in the parental
and RIL genotypes of the common bean (Fig. 1). Ac-
cordingly, these characters can be modeled by the power
eq. (1). Furthermore, this behavior was observed at the
two environmentally different sites, Palmira (lower solar
radiation, shorter day length, and higher temperature)
and Popayan (higher solar radiation, longer day length,
and lower temperature). The allometric scaling of the
parental genotypes were different. The Calima parent
consistently had larger and heavier leaves than the
Jamapa parent, but these characteristics by the former

Zhang et al. BMC Genetics           (2020) 21:29 Page 2 of 14



decreased during development, especially in Popayan.
An analysis of all genotypes showed that although allo-
metric scaling was very similar at the two sites during
the early developmental stage when leaves were not
completely unfurled, the scaling begun to diverge soon
afterward. Plants in Popayan grew a larger leaf area rela-
tive to leaf mass (b = 0.94) than those in Palmira (b =
0.88); however, leaves were larger and heavier in the lat-
ter than in the former. In summary, these plots indicated
that allometric scaling of at least the first trifoliate
changes with development and that this change depends
on the environment. The plots in Fig. 1 also show exten-
sive variation and transgressive segregation in the RIL
population, suggesting the presence of genes that control
many aspects of leaf growth and development and that
each parent has alleles with contrasting contributions to
the leaf traits.

QTL control of static Allometry
The static model was used to map those QTLs that con-
trol leaf allometric scaling in the RIL family. The signifi-
cant QTL regions and their peak QTLs detected by
static model for each time point were shown in plot of
Table 1 and Additional file 1. A consistent major QTL
region was identified on chromosome 7 for all the time
points except for time 1. The genetic effects of these
QTLs on leaf mass and leaf area were different among
QTLs and time points. The genetic effect of LSA7.2 in
Palmira was greater than that in Popayan at time 3. All
the peak QTL genetic effects were positive except
LSA3.2 at time 4 located between 32.5–39.8 cM on
chromosome 3.
An overlapping QTL region on chromosome 7 was de-

tected at both sites at times 2–4, and a major QTL lo-
cated in this region LSA7.3 (also named LOA7.2
(LSA7.3)) between markers DIM_7–7 and DIM_7–8 was
chosen for further analysis (Table 1; Additional files 1,
2). This QTL affected the allometric relationship of leaf
area and leaf mass at both sites, but it appeared to be
under developmental control. The mean values on leaf
mass and area of LOA7.2 (LSA7.3) increased from time
1 to time 4, but decreased at time 5 for both sites, and
the genetic effects showed similar patterns
(Additional file 3). The mean values and genetic effect

Fig. 1 The static allometric scaling of leaf area vs. leaf mass at
different time points 1–5. The static allometric scaling among the
common bean RILs grown at Palmira (red) and Popayan (blue) are
denoted by solid circles. The fitness of power equation to covarying
leaf area and leaf mass data is indicated by curves at Palmira (red)
and Popayan (blue), with the slopes of static allometry denoted by β
estimates. The positions of two parents, Jamapa (triangles) and
Calima (solid circles), in the static allometry of the RIL population, are
indicated for two different locations
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values for the same genotype were environment-
dependent. The absolute values of environmental effects
were getting bigger with time.
The effect of LOA7.2 (LSA7.3) is basically silent during

the early stages of leaf development, and appears to be ac-
tivated quickly after the leaf reaches maturity, but its effect
decreases during the late stages of development (Fig. 2).
Specifically, relative to the Jamapa LOA7.2 (LSA7.3) alleles
(JJ), the Calima alleles (CC) are responsible for an increase
in leaf area and leaf mass growth. Although LOA7.2
(LSA7.3) is a pleiotropic QTL for the two distinct environ-
ments, its effect varies between Palmira and Popayan,

suggesting a remarkable QTL-environment interaction for
leaf allometry (Fig. 2). The slope of leaf area-leaf mass al-
lometry by LOA7.2 (LSA7.3) is generally consistent (β ≈
1.04) over developmental time at Popayan, but it decreases
(β = 1.17–0.97) as plants develop at Palmira. Under the
control of LOA7.2 (LSA7.3), after the middle stage of
plant development, leaves at Popayan tend to invest more
energy to surface area growth relative to mass accumula-
tion, with a greater extent than those at Palmira. Taken
together with results from Fig. 1, LOA7.2 (LSA7.3) can be
used to explain why leaf allometry varies in two different
sites.

Table 1 Peak quantitative trait loci (QTLs) located in significant QTL regions by static allometry model. QTLs were assigned to one of
four categories: Leaf Ontogenetic Allometry (LOA), and Leaf Static Allometry (LSA)

Time
Point

Peak QTL
name

Chromosome
(Position)

QTL
region
(cM)

Left-right
marker

Leaf mass (uM = exp(uz)) Leaf area (uA = exp(uy))

CC JJ Genetic
effect

CC JJ Genetic
effect

Popayan

Time
1

LSA3.1 3 (32.5) 32.5 DiM_3–18 -
DiM_3–19

0.063 ± 0.002 0.052 ± 0.002 0.011 13.736 ± 0.596 12.061 ± 0.469 1.674

LSA3.3 3 (74.2) 32.5–
77.8

Bng216 0.063 ± 0.002 0.050 ± 0.002 0.013 13.736 ± 0.524 11.473 ± 0.581 2.263

LSA9.1 9 (30.1) 29.3–
31.1

DiM_9–22 0.063 ± 0.002 0.050 ± 0.002 0.013 14.585 ± 0.588 10.914 ± 0.460 3.672

Time
2

LSA7.5 7 (38.6) 29.5–
56.0

DiM_7–8 -
DiM_7–9

0.196 ± 0.005 0.151 ± 0.004 0.045 49.899 ± 1.394 39.646 ± 1.034 10.253

Time
3

LSA6.1 6 (49.2) 44.2–
54.4

Bng183 - DiM_
6–25

0.262 ± 0.008 0.219 ± 0.006 0.043 64.072 ± 1.982 51.935 ± 1.251 12.136

LSA7.2 7 (35.9) 19.3–
48.0

DiM_7–7 -
DiM_7–8

0.267 ± 0.007 0.206 ± 0.005 0.061 64.716 ± 1.754 49.899 ± 1.304 14.817

Time
4

LSA4.1 4 (62.7) 60.6–
63.8

DiM_4–18 -
DiM_4–19

0.262 ± 0.009 0.223 ± 0.007 0.039 62.803 ± 2.100 50.400 ± 1.737 12.402

LSA7.2 7 (35.9) 16.3–
67.7

DiM_7–7-DiM_
7–8

0.284 ± 0.007 0.208 ± 0.007 0.076 66.686 ± 1.672 47.465 ± 1.669 19.221

Time
5

LSA7.2 7 (35.9) 17.3–
52.0

DiM_7–7-DiM_
7–8

0.262 ± 0.010 0.190 ± 0.008 0.072 59.146 ± 2.027 42.948 ± 1.900 16.197

Palmira

Time
1

LSA3.1 3 (32.5) 32.5 DiM_3–18 -
DiM 3–19

0.096 ± 0.014 0.081 ± 0.015 0.015 22.421 ± 2.582 18.174 ± 2.698 4.247

Time
2

LSA7.3
(LOA7.2)

7 (36.6) 16.3–
56.0

DiM_7–7 -
DiM_7–8

0.32 ± 0.002 0.244 ± 0.002 0.074 89.121 ± 0.67 65.366 ± 0.614 23.440

Time
3

LSA7.2 7 (35.9) 11.4–
56.0

DiM_7–7 -
DiM_7–8

0.454 ± 0.007 0.326 ± 0.006 0.128 100.484 ± 1.737 70.81 ± 1.833 29.674

Time
4

LSA3.2 3 (33.8) 32.5–
39.8

DiM_3–20 0.432 ± 0.016 0.449 ± 0.009 −0.017 80.64 ± 2.975 90.922 ± 1.933 −10.281

LSA7.1 7 (33.5) 10.4–
56.0

DiM_7–7 -
DiM_7–8

0.522 ± 0.011 0.372 ± 0.009 0.150 100.484 ± 2.612 73.7 ± 2.09 26.784

Time
5

LSA7.2 7 (35.9) 14.3–
60.9

DiM_7–7 -
DiM_7–8

0.497 ± 0.018 0.368 ± 0.014 0.129 93.691 ± 3.118 69.408 ± 2.748 24.283

The QTL information at each time point by static allometry model for Palmira (PAL) and Popayan (POP) in Colombia was shown. Maximum likelihood estimates
(MLEs) of parameters uM and uA (the power transformations of uz and uy) and standard errors of the estimates for each QTL found to be different in the common
bean (Phaseolus vulgaris) allometry relationship at two different sites, Palmira and Popayan. uM and uA are the genotypic values of leaf mass and leaf area for
genotype CC and JJ. QTL region, the significant distribution range on chromosome. Peak QTL, the QTL located at the peak of the significant QTL region. Left-right
marker, left marker and right marker on the both sides of peak QTL which located at the interval of two markers, particularly some peak QTLs located at a
single marker
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How leaf area scales with leaf mass across developmental
time
Despite tremendous variability among different RILs, the
pattern by which leaf area growth covaries with leaf
mass growth can be explained by the developmental al-
lometry theory. Figure 3 illustrates the goodness-of-fit of
the power eq. (8) to the mean curve of area-mass onto-
genetic allometry among all RILs. The data clearly shows
that the environment can have a significant effect on the
ontogenetic control of allometric scaling of the leaf.
First, RIL-RIL variation observed at Palmira was greater
than at Popayan. Second, leaves at Palmira tend to accu-
mulate more dry matter per unit of leaf area as they
growth older than those at Popayan. Third, the slope of
leaf area growth to leaf mass growth is close to unity
(β = 1.01) (eq. 1a) at Popayan, whereas this β value is less
than 0.90 at Palmira. This discrepancy may be due to
different resource allocation patterns deployed under
different environments in the leaves of these genotypes.
The two parents display different patterns of ontogen-

etic allometry. In Palmira, Jamapa’s slope of leaf area
growth over leaf mass growth is greater than that of
Calima from early to middle stages of growth (Fig. 3).
This differential pattern shows that young Jamapa leaves
expand their leaf area more than those of Calima for the
same amount of accumulated mass. However, this pat-
tern reverses from the middle to late stages of develop-
ment. Such parent-dependent differences are much less
pronounced in Popayan indicating the environmental
sensitivity of this ontogenetic phenomenon. Pronounced
transgressive segregation was found in ontogenetic al-
lometry at both sites suggesting again a complex system.

QTLs modulation of ontogenetic Allometry
We derived a dynamic allometry QTL mapping model
based on the likelihood function (6), which integrates the
ontogenetic allometric eq. (5) and functional mapping.
We obtained the profiles of log-likelihood ratio test statis-
tics at 2 cM intervals through the entire genome (Add-
itional file 2) to scan for QTLs. Genome-wide significance
tests allowed us to detect several significant QTL regions,
including two regions on chromosome 7 (9.4–68.7 cM)
and 6 (16.0–18.4 cM) at Popayan and two regions on
chromosomes 7 (15.3–59.5 cM) and (23.9–25.6 cM) at

Fig. 2 The static allometry of leaf area vs. leaf mass of LOA7.2
(LSA7.3). The static allometry for Jamapa-inherited genotype JJ
(triangles) and Calima-inherited genotype CC (solid circles) of LOA7.2
(LSA7.3) at Palmira (red) and Popayan (blue) are shown at time
points 1–5. The fitness of power equation to observed leaf area and
mass data is indicated by curves at Palmira (red) and Popayan (blue),
with the slopes of static allometry denoted by β estimates. The
genotypic means of leaf area and leaf mass for JJ and CC at both
locations are shown on the exponent curves
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Palmira (Table 2; Additional file 2). The genetic effects
were different among different QTLs and between two
sites for the common QTL LOA7.2 (LSA7.3). A major
QTL named LOA7.2 that governs the scaling of leaf area
over leaf mass throughout development at both sites. This
QTL is located within markers DiM_7–7 and DiM_7–8
on chromosome 7, consistent with the location of the
static allometry QTL LOA7.2 (LSA7.3) (Figs. S2, S3). This
suggests that LOA7.2 (LSA7.3) is a major QTL triggering
a remarkable impact on both static and ontogenetic al-
lometry. In addition to LOA7.2 (LSA7.3), we detected two
relatively small QTLs on chromosomes 6 (LOA6.1) and 9
(LOA9.1) that specifically affect ontogenetic allometry at
Popayan and at Palmira, respectively.
We further characterized the genotype-dependent

mode of action of locus (LOA7.2 (LSA7.3), LOA6.1 and
LOA9.1) and their environmental dependencies as ob-
served by the changes observed from Palmira to Popa-
yan. The allometric parameter values and genetic effects
of the same QTL were different between two sites. The
absolute values of environmental effects of each param-
eter at Palmira were greater than that at Popayan (Add-
itional file 3). Genotype CC for LOA7.2 (LSA7.3)
displays a greater slope of allometric change over time,
leading to larger leaf area and leaf mass, than genotype
JJ at Palmira (Fig. 4a). This QTL has an inverse pattern
of genetic effect at Popayan, i.e. genotype JJ has a greater
slope than CC. The phenotypic difference of the same
genotype expressed in different environments is called
phenotypic plasticity. Genotype JJ has greater phenotypic
plasticity in the allometric slope than genotype CC. At
LOA6.1 which only significant only at Popayan, geno-
type CC has a greater slope than JJ at Popayan, and the
allometry growth curves almost coincided (Fig. 4b). The
differences between genetic effects of two sites on

LOA6.1 were smaller than that on the other two QTLs.
LOA9.1 on chromosome 9 only affects ontogenetic al-
lometry at Palmira, at which genotype JJ has a greater
slope and larger leaf area and leaf mass than CC (Fig. 4c).
These two QTLs are environment-specific, triggering
their effects on ontogenetic allometry depending on
where the plants are grown. After function annotation,
there were candidate genes coded hypothetical proteins
that located at the most of the significant QTLs detected
by both models (Additional file 3).

Discussion
Leaves, the aboveground resource-acquiring organ of
plants, play a pivotal role in maintaining plant growth
and development [2, 3]. The allometric relationship be-
tween leaf area and leaf mass reflects the pattern of car-
bon allocation and plants’ resource-acquiring strategy [9,
10]. Ecological research has endeavored long to under-
stand the role leaf allometry plays in evolution [5, 10, 11,
41], and the genotypic variation of specific allometric re-
lationship between leaf area and mass has been exten-
sively measured [7, 14, 33, 34]. Despite of these efforts,
our knowledge of the genetic control of the allometric
relationship of leaf area and leaf mass remains limited.
More importantly, how the allometric relationships of
these two leaf traits vary with environmental change has
never been validated by static and ontogenetic allometry
mapping models simultaneously.
The covariation of different traits is thought to obey

allometric scaling laws that can be interpreted from fun-
damental principles of biophysics and biochemistry [28].
Allometry is very well studied and the genetics behind
various allometric relationships have been examined
across a variety of taxa [25, 29, 41]. In this article, we used
two alternative models to analyze the genetic architecture

Fig. 3 The ontogenetic allometry of leaf area vs. leaf mass for the common bean RILs grown at Palmira and Popayan. The ontogenetic allometry
fitting of leaf area and leaf mass by eq. (5) A(t) = αMβ(t) – d is indicated by curves (denoted by gray lines) at each location, with the slopes of
ontogenetic allometry denoted by β estimates. The ontogenetic allometry of two parents Jamapa and Calima is also indicated
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of allometric scaling between leaf area and leaf mass in
the common bean. The static model characterizes how
one trait scales with other traits at the same developmen-
tal stage across all individuals, whereas the ontogenetic
model specifies the allometric relationship of one trait
with other traits across differential times [23]. Both static
allometry and ontogenetic allometry have been used to

address the fundamental question of whether microevolu-
tionary processes can explain patterns of macroevolution,
a still unsolved question in evolutionary biology [42].
Mathematical analysis showed that these two processes
differ from each other with the extent of difference af-
fected by the covariance between trait value and the onto-
genetic allometric slope [23].

Fig. 4 The ontogenetic allometry of leaf area vs. leaf mass for different QTL. Jamapa-inherited genotype JJ (slash curve) and Calima-inherited
genotype CC (solid curve) at LOA7.2 (LSA7.3) (a), at Popayan-specific QTL LOA6.1 on chromosome 6 (b), and at Palmira-specific QTL LOA9.1 on
chromosome 9 (c) for Palmira (red) and Popayan (blue). The estimated slopes of ontogenetic allometry (β) for different genotypes at different
locations are indicated at the right lower corner of the plot. Significance tests of β differences are shown by different letters
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As a valuable legume due to its higher nitrogen fixing
capacity [37], the ecophysiological studies of the com-
mon bean, aimed to explore its allometry of leaf area
and leaf mass, are particularly interesting to plant
breeders. We found that the static allometry of these
two traits varies in its slope among different develop-
mental times (Fig. 1). The formula reveals that invest-
ment of dry mass to the light-capturing surface per unit
is following the scaling exponent of leaf area vs. leaf
mass. Compared with those at young stages, leaves at
old stages tend to invest more energy to structural and
defense tissues, with increasing dry mass per leaf area [5,
43, 44]. At POP with low temperature and high light,
the scaling exponent of leaf area and mass was closed to
unity, suggesting that the dry mass kept the same speed
as leaf area (β = 1.03, Fig. 3). As to the high temperature
and weak light environment at PAL, the common bean
allocated more carbon to expand leaf area for light har-
vesting at early growth stage (β = 1.12, Fig. 1), which can
be explained by the “network supply constraint” hypoth-
esis [21]. However, at late growth stage when the leaf
area reached its maximum value, the leaves invested
higher dry mass for per leaf area unit, as shown by the
scaling exponent of less than one (β = 0.59, Fig. 3). This
phenomenon can be explained by the “diminishing re-
turn” hypothesis [15, 19].
The allometry of these two traits varied in parameter

values, genetic and environmental effects on the same
QTL between different environments (Additional file 3).
Using the same RIL mapping population, two studies
have also detected the heterochrony QTLs that were
pleiotropically expressed at PAL and POP [45, 46]. The
former explored the role of these QTLs in influencing
the dynamic growth curves of leaf area and leaf mass
using four heterochronic parameters [45], while the lat-
ter implemented a bivariate statistical procedure to iden-
tify QTLs by estimating growth parameters of the two
leaf traits and incorporating these parameters into a
mapping framework [46]. Different from these studies,
we focused more on the genetic mechanism underlying
allometric relationships between the two leaf traits by
introducing allometric model in genetic mapping frame-
work, perspectivity from the union of ecology and genet-
ics. The ontogenetic allometry at warmer PAL can be
better explained by the “diminishing return” hypothesis;
that is, as leaves grow, the area increases more slowly
than the mass (Fig. 3). At cooler POP, the slope of the
ontogenetic allometry is close to one, suggesting that a
mix of the “diminishing return” and “network supply
constraint” hypotheses may influence the scaling of leaf
form. The results obtained from the analysis of
environment-induced differences confirms the argument
that static and ontogenetic allometry undertakes differ-
ent physiological mechanisms [23]. Comparing the

allometry relationship of PAL and POP (Fig. 1; Fig. 3),
plants at PAL with weak light (lower solar radiation and
shorter day length) and higher temperature adopted dif-
ferent carbon allocation strategy on leaf growth. The
common bean tended to allocate nutrient substance to
expanded leaf area for improving light capture efficiency
under low light condition at early growth stage. After
the middle growth stage, leaf area could meet the light
capture demand, the plant began to increase blade thick-
ness or dry weight. While common bean growing at
POP with intense sunlight but lower temperature dis-
tributed more carbon to blade thickness (leaf mass)
against the cold at the beginning of growth stage than
the plant at PAL, with the two leaf traits increasing in
the same pace.
We implemented static and ontogenetic allometry into

a genetic mapping setting, which enables the
characterization of the genetic origin of allometry. Spe-
cific QTLs mapped by this strategy could facilitate our
understanding of how covariation between different
traits drives the phenotypic evolution of species. We
have found specific sets of QTLs for the static allometry
and ontogenetic allometry of leaf area vs. leaf mass in
the common bean. The genetic effects and environmen-
tal effects of the QTLs were different between two sites,
implying the pleiotropic effects of the QTLs (Additional
file 3). There was a major QTL region on chromosome
7 associated with allometry relationship of two leaf traits
by both genetic mapping models. One QTL located on
this region was found to exert a major effect on how
these two traits scale among different individuals and
also how they scale over developmental time. The QTL
LOA7.2 (LSA7.3) was the most significant one that has
been detected to affect leaf area-leaf mass allometry. The
QTL region on chromosome 7 we detected overlapped
with those found in P. vulgaris that associated with
shoot, root, seed and disease resistance traits [36, 47–
51]. This QTL region also included Sho7.1, Sho7.2, Sho
7.3, and swg7.1 that closely related to leaf area, length,
width, and dry weight of P. vulgaris [51], because
LOA7.2 (LSA7.3) was related to leaf growth. Besides,
this QTL region was also found to be associated with
pod width, pod thickness [48], yield, pod harvest index,
seed weight, pod weight [50], and seed nutrient accumu-
lation [47], indicating that LOA7.2 (LSA7.3) may also
play an important role in yield production and implying
a strong correlation between leaf photosynthesis and
yield production. It is interesting to note that LOA7.2
(LSA7.3) resides within the same location of a major
pleiotropic QTL (named pleioQTL) that affects growth
parameters of leaf area and leaf mass for the common
bean grown in two different environments by two
models. The major QTL region detected by static and
ontogeny models at both sites in our study was almost
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overlapping with the region found in the former study.
The peak QTL LOA7.2 (LSA7.3) of this region located
between DiM_7–7–DiM_7–8, the same as LeafG1 and
QTL LOA6.1 located at DiM_6–15 on chromosome was
also very close to LeafG1 (Position: DiM_6–15–Bng088)
detected by Jiang et al. The QTLs LOA7.2 (LSA7.3)
/LeafG1 and LOA6.1/LeafG2 exerted pleiotropic effects
on different traits and displayed environmental plei-
otropy on the same trait between different environments
[45]. Likewise, they also acted on the allometric growth
relationship of these two leaf traits and displayed envir-
onmental pleiotropy as well in current study. A further
genetic manipulation, such as cloning, may shed light on
the molecular basis of how this QTL universally governs
multiple developmental aspects of leaf growth.

Conclusions
This study provides a contrasting picture of genetic archi-
tecture for static and ontogenetic allometry relationships
between two different environments. We found a com-
mon QTL region and analysed the effect of a major pleio-
tropic QTL located in this region. Also, we found a couple
of minor QTLs for leaf allometry. These QTLs are highly
specific to the type of allometry, static vs. ontogenetic, to
developmental time, early vs. late, and to environment,
warmer and low-light vs. cooler and high-light. Alleles at
these QTLs inheriting from parent Calima or Jamapa may
contribute favorably or unfavorably to the increasing allo-
metric slope of leaf area vs. leaf mass, one of the driving
forces that cause transgressive segregates in the cross
population. These recombinants, detected by our allom-
etry mapping strategy, provide a fuel for plants to adapt to
their new environments by adjusting the relative growth
of leaf area and leaf mass. Overall, our findings facilitate a
better understanding of the genetic mechanisms under-
lying plants programing their leaf morphogenesis in adap-
tation to environmental changes.

Methods
Mapping population and genotyping
A recombinant inbred line (RIL) population was gener-
ated from the cross between the Mesoamerican bean
cultivar Jamapa and the Andean cultivar Calima of Pha-
seolus vulgaris L. The RI family comprises 173 lines,
which was propagated by single seed descent and in bulk
afterwards to the F11:14 generation. The nuclear DNA
was extracted from leaf of each RI line, and then PstI
GBS libraries were prepared and submitted for genotyp-
ing by sequencing in the Illumina HiSeq platform. Se-
quence data were processed by multiple bioinformatics
tools to obtain SNPs. Linkage map was constructed with
513 unique loci covering 943 cM, which included 442
SNP loci (DiM), 66 RFLP-based markers, three soybean-
derived SNP markers, and two phenotypic marker loci

for this RILs population. The two parents and RILs were
genotyped for 513 molecular markers located on 11 link-
age groups each covering a common bean chromosome
[40].

Experimental design and data collection
The mapping population (including both parents) was
planted at two sites, Palmira and Popayan in southwest-
ern Colombia during 2011–2012. These two sites have
different temperature regimes [45]. In Palmira, the mean
air temperature ranges from 19.5 to 28.8 °C; solar radi-
ation, 14.7 MJ m− 2 d− 1; day length, 15.6 h; and growing
season, from 11 Nov 2011 to Jan 2012. In Popayan, the
mean air temperature ranges from 13.7 to 25.5 °C; solar
radiation, 11.8MJ m− 2 d− 1; day length, 12.1 h; and grow-
ing season, from 23 Mar 2012 to Jun 2012. A random-
ized complete block row-column design with three
replicates (six for each parent) was employed at each
site. Each RIL plot had between 30 and 50 plants [46].
One plant was harvested weekly from each RIL plot and
from all three replicates. The first five leaves were har-
vested and measured independently for leaf area and
mass (dry weight). The weekly leaf samplings started
soon after the plants reached stage V0 (i.e. the most of
leaves are fully-expanded) and ended when the plants
reached stage R1 (i.e. the time at first anthesis). Data of
the first trifoliate leaf at each time point were employed
to obtain the mean of three replicates for each RIL for
QTL mapping. The combined area of the leaflets of each
leaf was measured using a Li-Cor® LI-3100C area meter
after harvest. Leaf blades were dried at 65 °C in a drying
oven for 3 days. Leaves were equilibrated to room
temperature after removing them from the oven before
weighing them on a balance with a 10− 3 g resolution.
We obtained data on leaf area and leaf mass of 173 lines
at five time points from each site.

Statistical modeling
Mapping static allometry
Suppose there is a mapping population of n recombinant
inbred lines (RILs) in which there are two alternative
homozygous genotypes at each marker. We are inter-
ested in the allometric covariation of leaf area and leaf
mass, which can be described by a power eq. (1a) for
each time point (time 1, time 2, time 3, time 4, and time
5). Let yi and zi denote log-transformed values of leaf
area and leaf mass measured at a time point for RIL i
(i = 1, …, n), respectively. Consider a QTL with two ge-
notypes QQ (coded as 1) and qq (coded as 2). Let μ1y
and μ1z denote the genotypic values of leaf area and leaf
mass for genotype AA, and μ2y and μ2z denote the geno-
typic value of leaf area and leaf mass for genotype aa, re-
spectively. If this QTL affects leaf allometry, we can
establish the following relationships from equation (1b):
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μ1y ¼ bþ βμ1z ð2aÞ

μ2y ¼ bþ βμ2z ð2bÞ

by letting b = logα. The genetic effects of this QTL on
leaf mass and leaf area are calculated as az = μ1z − μ2z
and ay = μ1y − μ2y = βaz, respectively. The intercept of
leaf area regressed on leaf mass is estimated as b ¼ 1

2 ½ð
μ1y þ μ2yÞ−βðμ1z þ μ2zÞ�.
Using this QTL’s information, we formulate a bivariate

likelihood for two leaf traits based on a mixture model,
expressed as

L Φjy; zð Þ ¼
Yn

i¼1

ω1ji f 1 yi; zið Þ þ ω2ji f 2 yi; zið Þ� � ð3Þ

where ωj|i is the conditional probability of QTL geno-
type j (j = 1 for QQ or 2 for qq), conditional on the
marker interval that harbors the QTL, fj(yi,zi;Σ) is the bi-
variate density function of leaf area and leaf mass for
QTL genotype j, and Φ represents the unknown parame-
ters that describe the location of the QTL and its genetic
effects on leaf allometry and residual (co)variances. The
conditional probability is expressed in terms of the re-
combination fraction between the marker interval and
QTL [52]. fj(yi,zi;Σ) is assumed to be a normal density
function expressed as

f j yi; zið Þ ¼ 1

2πσyσz

ffiffiffiffiffiffiffiffiffiffi
1−ρ2

p exp

−
1

2 1−ρ2ð Þ
yi−μjy

� �2

σ2y
−2ρ

yi−μjy
� �

zi−μjz
� �

σyσz
þ

zi−μjz
� �2

σ2
z

2
64

3
75

2
64

3
75

where μjy and μjz were defined as above and σ2y , σ
2
z and

ρ are the error variances of leaf area and leaf mass and
their correlation coefficient, respectively.
The expectation-maximization (EM) algorithm was

implemented to estimate the parameters Φ = (QTL pos-
ition; az, b, β; σ2y , σ

2
z , ρ). The significant QTL was esti-

mated by assuming a QTL at every 2 cM position over
the linkage map. After the parameters are estimated, we
need to perform hypothesis tests. First, whether there
exists a significant QTL can be tested by formulating the
following hypotheses:

H0 : �μ1y ¼ μ2y � and � μ1z� ¼ �μ2z ð4Þ

H1: At least one of the equalities in the H0 does not
hold.
The log-likelihood ratio calculated from the H0 and

H1 is compared against the genome-wide critical thresh-
old determined from permutation tests. Second, we can
test whether β is significantly different from a specific

value, e.g. 1 or 3/4. The allometry theory can be used to
interpret the biological meaning of these parameters
[17].

Mapping ontogenetic allometry
Ontogenetic allometry states that leaf area (A) is scaled
with leaf mass (M) over developmental time (t). Previous
studies noted that as leaves grow, increases in surface
area and mass are not synchronous [8]. To accommo-
date this phenomenon, we introduced an intercept d
into the power equation [53], obtaining

A tð Þ ¼ αMβ tð Þ � d ð5Þ
Let Yi(t) and Zi(t) denote the observed values of leaf

area and leaf mass at time t (t = 1, …, T) for RIL i (i = 1,
…, n), respectively. By statistical reasoning, we found a
goodness-of-fit of eq. (5) to Yi(t) and Zi(t) data for indi-
vidual RILs (Additional file 4).
To map how a QTL affects the ontogenetic allometry

of leaf area vs. leaf mass, we implemented Zhao et al.’s
[54] bivariate functional mapping. Consider a QTL with
two genotypes QQ and qq. Let Yi = (Yi(1), …, Yi(T)) and
Zi = (Zi(1), …, Zi(T)). The bivariate functional mapping
is formulated as

L ΦjY ;Zð Þ ¼
Yn

i¼1

ω1ji f 1 Y i;Zið Þ þ ω2ji f 2 Y i;Zið Þ� � ð6Þ

where ωj|i was defined as above, and fj(Yi; z = Zi) is a
bivariate longitudinal normal distribution function for
QTL genotype j (j = 1 for QQ and 2 for qq). The
genotype-dependent mean vector of fj(Yi; Zi) is expressed
as

μjy;μjz

� �
¼ μjy 1ð Þ;…; μjy Tð Þ; μjz 1ð Þ;…; μjz Tð Þ

� �

ð7Þ
Based on the allometry law expressed by the power eq.

(5), we model the genotypic value of leaf area by

μjy tð Þ ¼ α jμ
β j

jz tð Þ−d j ð8Þ
Based on the principle of functional mapping, we

model the genotype-dependent growth of leaf mass μjz(t)
by a growth equation, such as logistic equation [55].
Thus, we have

μjz tð Þ ¼ Aj

1þ Bje−Rt
ð9Þ

where parameters (Aj, Bj, Rj) are the asymptotic growth,
initial growth and relative growth rate of leaf mass for
genotype j over time, respectively. Therefore, by substitut-
ing eqs. (8) and (9) into the mean vector (7), we can model
the genotypic values of each QTL genotype for leaf area
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and leaf mass at different time points through parameters
(Aj, Bj, Rj; αj, βj, dj). Such modeling has incorporated the
allometric scaling law and growth law, which makes QTL
mapping of biological relevance and robustness.
The (co)variance matrix (Σ) of fj(Yi;Zi) is a symmetric

matrix containing three longitudinal (co)variance matrices
within and between leaf area and leaf mass. Zhao et al.
[54] derived a bivariate first-order structured antedepen-
dence (bi-SAD(1)) model to fit the structure of Σ. The bi-
SAD (1) model requires the following parameters: antede-
pendence parameters (ρy and ρz) and innovation variances
(σ2y and σ2zÞ for leaf area and leaf mass, and correlation be-

tween the two traits (ρyz). Based on these parameters,
Zhao et al. [54] derived the closed forms of the determi-
nants and inverse of the bi-SAD(1)-structured longitudinal
matrix. By implementing such closed forms into the likeli-
hood (6), we can greatly increase the computational effi-
ciency and precision of parameter estimation Φ = (QTL
position; Aj, Bj, Rj; αj, βj, dj; ρy, ρz, ρyz, σ2y ; σ

2
zÞ.

Accordingly, the estimation of unknown parameters
can be made by a hybrid between the EM and simplex
algorithms. The QTL position can be estimated by a grid
approach. The presence and location of an ontogenetic-
allometry QTL can be tested through the null
hypotheses:

H0 : Aj;Bj;Rj; α j; β j; d j

� �
≡ A;B;R; α; β; dð Þ for all j

¼ 1; 2

ð10Þ
These tests are carried out by calculating the log-

likelihood ratio for the QTL effect at each position and
comparing it to the genome-wide critical threshold deter-
mined from permutations tests. We can specifically test
whether the QTL affects the growth trajectory of leaf mass
(11), and/or its ontogenetic allometry with leaf area (12).

H0 : Aj;Bj;Rj
� �

≡ A;B;Rð Þ for all j ¼ 1; 2 ð11Þ

H0 : α j; β j; d j

� �
≡ α; β; dð Þ for all j ¼ 1; 2 ð12Þ

If both null hypotheses are rejected, then this means
that the QTL pleiotropically affects leaf area and leaf
mass growth. Possible functions of all the QTLs were
annotated via BLAST in the “nr” database on website of
National Center of Biotechnology Information (NCBI;
http://blast.ncbi.nlm.nih.gov/).
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Additional file 1. The profile of log-likelihood ratio (LR) test statistics
over 11 chromosomes for testing the existence of QTLs governing leaf

area vs. leaf mass static allometry at different time points 1–5 for the
common bean grown at Palmira (red) and Popayan (blue), with the LR
values besides the most significant QTLs. The slash horizontal line de-
notes the genome-wide critical threshold determined from 1000 permu-
tation tests.

Additional file 2. The profile of log-likelihood ratio (LR) test statistics
over 11 chromosomes for testing the existence of QTLs governing leaf
area vs. leaf mass ontogenetic allometry for the common bean grown at
Palmira (red) and Popayan (blue), with the LR values besides the most
significant QTLs. The slash horizontal line denotes the genome-wide crit-
ical threshold determined from 1000 permutation tests.

Additional file 3. The function annotation of all the QTLs, marker
information and the genetic and environmental effects.

Additional file 4 The ontogenetic allometry fitting (curve) of leaf area
and leaf mass data (dots) at 5 tome points for each RIL grown at Palmira
(red) and Popayan (blue) by the intercepted power eq. (5) A(t) = αMβ(t) –
d.
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