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Abstract

Background: Genomic selection has the potential to increase genetic gains by using molecular markers as pr¢dictors

of breeding values of individuals. This study evaluated the accuracy of predictions for grain yield, heading date, plant
height, and yield components in soft red winter wheat under different prediction scenarios. Response to selgction for
grain yield was also compared across different selection strategies- phenotypic, marker-based, genomic, cgmbination
of phenotypic and genomic, and random selections.

Results:Genomic selection was implemented through a ridge regression best linear unbiased prediction modsd in two
scenarios- cross-validations and independent predictions. Accuracy for cross-validations was assessed using a diverse
panel under different marker number, training population size, relatedness between training and validation
populations, and inclusion of fixed effect in the model. The population in the first scenario was then trained and used

to predict grain yield of biparental populations for independent validations. Using subsets of significant markers from
association mapping increased accuracy byr6% for grain yield but resulted in lower accuracy for traits with pigh
heritability such as plant height. Increasing size of training population resulted in an increase in, agithracy
maximum values reached when ~60% of the lines were used as a training panel. Predictions using related
subpopulations also resulted in higher accuracies. Inclusion of major growth habit genes as fixed effect in the model
caused increase in grain yield accuracy under a cross-validation procedure. Independent predictions re¢sulted in
accuracy ranging between0.14 and 0.43, dependent on the grouping of site-year data for the training and validation
populations. Genomic selection wasiperiof to marker-based selection in terms of response to selection for yield.
Supplementing phenotypic with genomic selection resulted in approximately 10% gain in response compfared to
using phenotypic selection alone.

Conclusions:Our results showed the effects of different factors on accuracy for yield and agronomic traits. Ampng the
factors studied, training population size and relatedness between training and validation population had the [greatest
impact on accuracy. Ultimately, combining phenotypic with genomic selection would be relevant for accejerating
genetic gains for yield in winter wheat.

Keywords:Agronomic traits, Genomic selection, Grain yield, Ridge regression best linear unbiased prediction,|Soft red
winter wheat, Yield components
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Background (PS), genomic (GS), marker-based (MS), and random se-
High-throughput genotypirg technologies that gener- lection (RS) strategies in terms of response to selection
ate large sets of DNA marker data at low-cost have ac{R), as a measure of genetic gain for grain yield.
celerated the adoption of genomic selection (GS) in
plant breeding programs{]. GS is a molecular breed- Results
ing tool that predicts genomic estimated breeding Trait heritability and yield across environments
values of individuals with aly genotypic information Broad-sense heritability H?) of grain yield in different
available through prediction models constructed basedenvironments used for GS are presented in Talle In
on a training population with genome-wide marker the training population of diverse soft red winter wheat
and phenotypic data available2] GS complement lines, H? for the measured traits were 0.48 (grain yield),
traditional breeding strategies and can potentially re-0.63 (heading date), 0.47 (kernel weight spikp 0.37
duce the need for large-scale phenotyping and acceler(kernel number spike®), 0.77 (thousand kernel weight),
ate the rate of genetic gain through shorter breedingand 0.81 (plant height). Values ®1? for grain yield data-
cycles B-5]. sets across the three populations ranged between 0.33
GS was initially implemented in animal breeding, par- (PA_ALL) and 0.85 (PA_Cluster3), with mean grain yield
ticularly of cattle 2, 6] and has now been extended to between 2.82 (NB_NPT) and 5.56 th& (PA_Cluster3)
different crops, including rice 7, 8], tomato [9, 10|, (Table 1). Within the training population, H? for grain
maize [L1], soybean 12], and barley L3]. In soft red yield ranged between 0.40 (BLUP14) and 0.80 (BLUP15).
winter wheat, GS studies have been conducted for
Fusarium head blight (FHB) resistancelfl], grain yield Effect of marker number and training population size
and stability traits [L5], yield, softness equivalence, flour Average number of markers used for GS for each subset
yield [16], grain yield, plant height, heading date, and (SS) were 820 (%39, 540 (S$19, and 270 (S&os
flour quality traits [17], and normalized difference vege- SNPs. Prediction accuracies for grain yield increased
tative index (NDVI) [18]. The performance of GS de- from 0.33 to 0.56 when S5 was used for predictions
pends primarily on the prediction accuracy, defined as(Fig. 1; Additional file 1: Table S1). Comparable predic-
the Pearsofs correlation between the selection criterion tion values were observed between the marker subsets,
and the true breeding value to select individuals with with both S$ o5 and S35 having similar accuracy
unknown phenotypes 19]. Factors affecting GS accuracy (0.54). Using less markers, on the other hand, was not
include gene effects, genetic composition of the trainingthat successful for heading date, in which using (35
population (TP), level of linkage disequilibrium, marker and S$ ;¢ resulted in negative accuracies (.01), prob-
density, statistical models, number of quantitative trait ably resulting from using a smaller number of markers.
loci (QTL), relationship between TP and the validation For plant height, similar accuracies were observed for
population (VP) or selection candidates, TP size, andS$) 1o S$.15 and whole genotype data (0.31), whereas
trait heritability [19-21]. using S$ s resulted in marginal decrease in accuracy
Muleta et al. 2] recently evaluated the effects of trait (0.31 to 0.25). For the yield components, there was a
architecture, size of TP, and different marker densities14-39% decrease in accuracy when using the marker SS
on GS accuracies for stripe rust in a diverse collection offor predictions. Using random SNP marker sets resulted
spring wheat. The genetic complexity of traits with agri- in accuracies between 0.07 (heading date) and 0.46
cultural and economic importance in wheat, such as(thousand kernel weight). Relative to the GWAS-derived
grain yield and yield components, limit the power of as- markers, using the random SNPs caused a significant
sociation mapping in identifying small effect loci2B]. (P<0.0001) reduction in prediction accuracies (0.34 vs.
GS can circumvent this problem by implementing 0.55) for grain yield. In contrast, significantly higher pre-
genome-wide markers for predictions, and thus candiction accuracies R<0.05) for random markers were
complement association analyses in dissecting the genebserved for all the other traits except thousand kernel
etic basis of important traits 24, 25]. Currently, there weight. Among the random marker sets, using RM1
are no reports on the accuracy of GS for a diverse popu{820 random SNPs) and RM3 (270 random SNPSs) re-
lation of soft red winter wheat lines that are adapted to sulted in similar prediction accuracy (0.30).
southeastern region of the US. Our objectives were then Increasing training population size resulted in in-
to (1) evaluate the effects of marker number, TP size, recreased accuracy across all the measured traits when val-
latedness between TP and validation set, presence aflation population size was held constant and reached a
fixed effect in the model, and genetic relatedness on acmaximum at TP150 (Fig2; Additional file 1: Table S2).
curacy of GS using cross-validations; (2) validate GSComparing TP25 with TP150, prediction accuracies in-
model in two biparental populations related to the TP creased from 0.18 to 0.46 for grain yield, from 0.27 to
(independent predictions); and (3) compare phenotypic0.73 for plant height (the most heritable trait), and from
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Table 1 Heritability and yield across different populations of soft red winter wheat used for genomic selection

Population No. of Dataset Environmenfs Mean (thal) Min Max HP
lines

Training population 239 ABLUP FAY14, FAY15, KEI15, MAR15, OKL15, NPT15 STU14, ROH15 3.10 0.07 7.14 O.
BLUP14 FAY14, STU14 291 0.37 6.49 0.40
BLUP15 FAY15, KEI15, MAR15, OKL15, NPT15, ROH15 3.31 0.07 7.60 0.80
NBLUP FAY14, FAY15, KEI15, OKL15 3.32 0.07 7.14 0.61
SBLUP MAR14, MAR15, STU14, ROH15 2.88 0.37 5.66 0.60

‘NC-Neusex ‘Bess(NB) 100 NB_ALL FAY15, FAY16, FAY17, NPT16, NPT17 3.63 0.03 7.49 0.70
NB_FAY FAY15, FAY16, FAY17 4.38 1.04 7.49 0.70
NB_NPT NPT16, NPT17 2.82 0.03 591 0.45

‘Pioneer Brand 26R6I'AGS 156 PA_ALL FAY12, FAY13, FAY14, GA12, GA13, LA13, MAR13 AMER14, 186 6.25 0.33

2000 (PA) STU13, STU14, TX12, TX13
PA_Clusterl FAY12, STU12, FAY14 4.09 3.34 481 0.50
PA_Cluster2 FAY13, MAR14 4.69 3.34 569 0.63
PA_Cluster3 GA12, GA13 5.56 147 7.41 0.85
PA_Cluster4 MAR13, STU13, TX12, TX13 4.00 2.81 498 0.66

? Indicate site-years included to calculate BLUP for each dataset used for genomic selection

b Broad-sense heritability, calculated using the formuls?= %

UG+0@+(7£
e e

° Results adapted from Mason et all§)]

0.19 to 0.47 for heading date. For yield components, acEffect of population structure and fixed effect in the
curacies increased from 0.12 to 0.40 for kernel numbermodel

spike 1, 0.19 to 0.59 for kernel weight spike, and 0.28 Previous STRUCTURE analyse§ identified three
to 0.58 for thousand kernel weight. A minimal increase subpopulations in the training populationQ1 (N =59
was observed (between 4.6 and 20.5%) from TP125 tbnes), Q2 (N =54 lines) andQ3 (N =126 lines), withQ2
TP150 as accuracy values hit a plateau. No significanand Q3 being the most related based on population dif-
differences between the mean accuracy of each traininderentiation coefficient On the average, usin@2 to pre-
population size across traits were observed for TP10Qict Q3 (and vice versa) resulted in the highest
and TP125 and for TP125 and TP150, whereas accuracgccuracies, whereas usinQl to predict Q2 resulted in
for TP25 was significantly lowe(P < 0.05) compared to the lowest accuracies for yield and yield components
all other training population sizes. (Fig.3; Additional file 1: Table S3). For grain yield, there
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Fig. 1 Accuracy for yield and agronomic traits under different marker sets for genomic sel@étigrain yieldPH- plant height;HD- heading
date; TKW- thousand kernel weighkNS- kernel number per spik&lV/sS- kernel weight per spikéS,;s- marker subset based on significance leve
P < 0.15 (~ 820 SNPS); ;- marker subset based on significance Ié+€l0.10 (~ 540 SNPSJ; - marker subset based on significance level
P < 0.05 (~ 270 SNP8g)i- whole genotype marker data (~ 5600 SNPs). Bars indicate standard errors
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Fig. 2 Effect of training population size on accuracy of genomic selection for yield and agronomiG\rajtain yieldPH- plant heightHD-
heading date7KI/- thousand kernel weighk/NS- kernel number per spik&i/s- kernel weight per spike. Size of validation population (VP) =60

were no significant differences among GS accuracies In general, GS accuracy for grain yield increased, al-
when Q2 was used in predictingQ3 (and vice versa). though marginally, wherPpd andvrn marker data were
Prediction accuracies of 0.09 and 0.10 were observeds fixed effect in the model (Figd; Additional file 1:
when Q1 was used as a training population to predict Table S4). For the ABLUP dataset, there was an in-
Q2 and Q3, respectively (Fig3). Prediction accuracies of crease in accuracy from 0.33 to 0.37 with the addition
0.22 and 0.26 were observed wh&® was used to pre- of Ppd-D1, whereas no increase was observed when
dict Q1 and Q3, respectively; whereas using3 to pre- vrn-Al was added. Using bottPpd-D1 and vrn-Al as
dict Q1 and Q2 resulted in prediction accuracies of 0.09 fixed effect simultaneously in the model had a greater
and 0.26. Accuracies for kernel number spikeranged effect on accuracy for the ABLUP, BLUP14, and
between 0.07 ©@1/Q2; TP/VP) and 0.25 Q3/Q2). For BLUP15 datasets compared to using only either locus
kernel weight spike®, accuracies ranged between 0.04as a fixed effect. Using’pd-D1 increased GS accuracy
(Q1/Q2) and 0.21 Q3 Q1) whereas for thousand kernel for all datasets, except for SBLUP. Inclusion of fixed ef-
weight, accuracy values ranged between 0.@@U/Q2) fect in the SBLUP dataset did not lead to significant
and 0.37 Q3Q2). changes in accuracy.
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Fig. 3 Accuracy for yield and yield components using different subpopulatioas training (TP) and validation populations (VP). Subpopuldtions
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standard errors
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environments$BLUP- BLUP across southern environments. Bars indicate standard errors

Independent predictions using biparental populations training population and the PA (0.48) and between the
Accuracy of the TP to predict two related biparental TP and NB (0.45).

populations ranged from 0.14 to 0.43 (Fig5; Add-

itional file 1: Table S5). Using NB as a validation popula- Selection response for grain yield

tion resulted in prediction accuracies ranging from 0.06 Response to selectioR for grain yield was highest for
to 0.22; whereas using PA as a VP resulted in predictiorPS + GS (0.34tha"), followed by PS (0.31thd) and
accuracies between 0.14 and 0.43. Grouping of site- GS (0.21tha?) (Table2), equal to a 22, 20, and 14% in-
years in both the training and validation population sig- crease above the population mean, respectiveR for
nificantly affected accuracy. For example, PA_ClusterdMS was 0.08tha' and for RS was 0.01tha, corre-
was the most predictable (accuracy of 0.40) of the PAsponding to a 4 and 0.63% increase above the population
site-year groupings, compared to 0.23 in PA_ALL, wheremean. Variance ¢?) was highest for RS and MS (both at
all VP site-years were included. Simple matching coeffi-0.13) followed by GS (0.12), whereas PS and PS + GS ex-
cients reveal a low to moderate similarity between thehibited the lowests® at 0.03.
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Fig. 5 Accuracy for grain yield under independent validations. Training popul&to239 lines; ABLUP, NBLUP, and SBLUP datasets) was|used
to predict NB/{ =100 lines) and PA/E 156 lines) across different site years and clustgral/- BLUP across all site-years for the\NNBAY-
BLUP across Fayetteville site-years (FAY15, FAY16NBAYI7BLUP across Newport site-years (NPT16, NBATAZ);represents 12 site-years
for the PAPA_Cluster! includes site-years FAY12, STU12, and FAY@dster2 includes FAY13 and MARR24; Cluster3 includes GA12 and
GA13PA_Cluster4 includes TX12, TX13, MAR13, and STU13
J
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Table 2 Response to selectioffor grain yield in the training population across different selection strategies
Selection strategy ~ Grain yield (tHa+ SD  Variance?) Selection differential,®  Response to selectioR® % change relative to PS

GS 3.61+0.34 0.12 0.44 0.21 -32.3

MS 3.34+£0.36 0.13 0.17 0.08 -74.2

PS 3.82+£0.16 0.03 0.65 0.31 -

RS 3.19 £ 0.36 0.13 0.02 0.01 -96.8
PS+GS 3.88+0.18 0.03 0.71 0.34 9.70

GS genomic selection MS marker-based selectior?S phenotypic selection,PS + GS phenotypic + genomic selectionRS random selection
a S =Msel - upop; Mpop = 3.171t ha_l
b Calculated ast = H*S where H? is heritability for grain yield based on published value in Lozada et 86[; equal to 0.48

Discussion predicting grain yield, whereas no significant differences
The impact of various factors on the accuracy of gen-was observed for thousand kernel weight. In other traits
omic selection for yield and agronomic traits were evalu-such as such as plant height and kernel number per
ated through cross-validations using a diverse panel ofpike, nonetheless, using random markers resulted in
soft red winter wheat lines that are adapted to the south-higher accuracies (Additional filel: Table S2). Overall,
eastern region of the US. Effects of marker number, sizave observed a variable effect of marker number in the
of TP, relatedness between training and testing set, andiccuracy of GS for the evaluated traits, where the genetic
the presence of fixed effect in the model were assessedrchitecture of the trait also played a role in determining
under a ridge regression model (RRBLUP). In anotherprediction accuracies. Selecting subsets that can cover
scenario, independent predictions were conducted usinghe maximum LD between marker and QTL would be
the diverse panel to predict grain yield of biparental pop- advantageous; otherwise for some traits, using whole
ulations of SRWW. The effects of these parameters ingenotype data will ensure that these relationships will be

the accuracy of GS are discussed below. captured, consequently resulting to better accuracies.
By performing association analyses exclusively on the
Accuracy for cross-validations TP and using the significant loci identified from these

The number of markers used for GS is crucial to ensureas our marker subsets for predictions, we disregarded
that marker-QTL relationships will be captured for the “inside trading effect that results when prediction
optimum accuracy 19, 27]. Grain yield had higher ac- accuracies are evaluated using QTL identified in the
curacies when subsets of associated markers were usesame group of lines14]. In winter wheat, Arruda et al.
compared to whole genotype data (0.56 vs 0.33), demonf14] previously demonstrated thatinside trading can
strating the effectiveness of these marker subsets in caplead to inflated values (i.e. ~32% overall increase) for
turing marker-QTL linkage disequilibrium (LD) for this GS accuracies for FHB-relatettaits when significant
trait. Our results agree with a previous study in winter QTL were treated as fixed effect in the model. We thus
wheat which observed that implementing subsets ofshowed here that even withoutinside trading’ it was
associated markersP(< 0.05) resulted in the best accur- still possible improve accurey for grain yield, which
acies for yield 16]. In other crops such as rice§] and reached a maximum accuracy of 0.56 whenygSwas
soybean 28], prediction accuracies for grain yield used for predictions. In comparison with other studies
decreased marginally when marker subsets were usedhat performed cross-validations20, 30], we observed
The use of evenly distributed markers was suggested imelatively high accuracies for grain yield in the current
performing predictions for grain yield and related traits study, particularly when subsets of markers were used
in rice, with the SNP position regarded as the most im- for predictions. One possible reason for this is that we
portant factor for accuracy §]. In this study, selecting used a population with mininal genetic stratification
the most significant markers K< 0.05) and using them or structure, hence a smaller number of markers in
for predictions did not necessarily result in the highest this case could capture LD relationships between
accuracies; in some traits (e.g. for plant height and thou-markers and QTL. Previously, it was shown that this
sand kernel weight), using the marker subsetoSre- panel has only three subpopulations, with no observ-
sulted in lower accuracies. For heading date and theable clustering of lines &sed on geographic origin
yield components, using marker subsets decreased ad26]. Moreover, the mean pairwise Chord distance
curacy, irrespective of heritability which suggests thatvalue among the lines was 0.28. These then indicate
these subsets might not have efficiently captured LD be-that genetic relatedness within and among the lines is
tween markers and QTL. Using subsets of markers fromcrucial in obtaining optimal prediction accuracies, par-
association mapping resulted in significantp € 0.0001) ticularly when models such as RRBLUP are being
higher accuracies relative to using random SNPs forimplemented.
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Altogether, we have observed the effects of differentConclusions

factors in the prediction accuracies for yield and agro- Different factors were observed to affect accuracy for
nomic traits. Results from this study could therefore be grain yield and agronomic traits in soft red winter wheat,
used as foundation in employing genomic selection ap-with training population size and the number of markers
proaches in different crops evaluated in multiple envi- having the greatest effects. Inclusion of fixed effect in
ronments. For instance, we have observed that a closerediction model increased accuracy for grain vyield
relatedness between training and test populationsunder single population cross-validations. Ultimately,
would result in optimal accuracies. When implement- genomic selection could be exploited further with trad-
ing genomic selection, breeding programs should there-itional PS to increase response to selection towards grain
fore create a training population that is able to capture yield improvement and increasing genetic gains in plant
the maximum genetic relationships between the train- breeding programs. The effects of the evaluated parame-
ing and validation populations to attain increased ters should be considered when implementing genomic
accuracies. The size of the training population, particu- selection not only in winter wheat, but also for other im-
larly for single-population cross-validations, was alsoportant crops to improve genetic potential and facilitate
observed to affect accuracies, where an increased nunthe process of improvement. Altogether, results could be
ber of lines is related to improved prediction accur- used as basis in designing and optimizing training popu-
acies. Plant breeding programs should thus build alation, selecting training and validation populations, and
training population that is“large’ enough; nevertheless, determining the ideal number of markers to be used for
caution is warranted as we have observed that there igenomic selection.
an optimal training population size and adding more
lines might not be advantageous in improving predic- Methods
tion accuracies. Plant material

The genetic materials used for cross-validations in this

study consisted of a panel of soft red winter wheat lines
Response to selection for grain yield previously utilized for a genome-wide association study
GS is a tool to complement PS in selectiripetter’ ge-  ([26]; referred to as training population, TP for the inde-
notypes through estimation of breeding values of indi- pendent validations;N =239 lines). The TP was com-
viduals [L9]. Within the parameters of this studyR for prised of genotypes from the SunGrains® (Southeastern
GS could only approach the level of PS and thereforeUniversity Grains) Breeding Cooperativevivw.sungrains.
showed a loweR ( 32% change relative to PS). How- Isu.edu.index.shtmlwhich included lines from Arkansas,
ever, the highest accuracy was observed when GS wd3eorgia, Kentucky, Louisiana, North Carolina, and Vir-
coupled with PS, resulting to a 10% increase ficom-  ginia, among others; and other sources of germplasm
pared to using PS alone. Using both phenotype andadapted to the southeastern region of the US. Two add-
breeding values for selections, Belamkar et &0j[ob- itional biparental populations were used for independent
served the feasibility of selecting higher yielding lines tovalidations: (1) a recombinant inbred line population
advance in the next season in a winter wheat preliminary(referred to as PAN =156 lines, #2, 43)) derived from a
yield trial. GS was superior to MS for three significant cross between soft red winter wheat cultivar®ioneer
loci in terms of R, whereas using four or more significant Brand 26R61 and ‘AGS 2000 (P1612956), and; (2) a
QTL for MS might not be beneficial as there would be double haploid (DH) population (referred to as NB;
lower number of individuals being selected. Arruda et al. N= 100 lines §4];) derived from a cross betweefNC-
[14] observed higher selection differentials for GS com-Neuse (PI633037 45];) and ‘Bess(Pl 642794 46];).
pared to MS using a maximum of five QTL associated
with FHB-related traits in soft red winter wheat. In the Genotypic data
same study, it was shown that decreasing selection inThe TP and PA were genotyped using the lllumina® 9 K
tensity (i.e. selecting for fewer lines) resulted in an in-single nucleotide polymorphism (SNP) chigly] whereas
creased selection differential and hence increasBd NB was genotyped with the 90 KSelectassays 48] at
Using simulations in maize double haploid populations, the USDA-ARS Eastern Regional Genotyping Laboratory
it was demonstrated that across different QTL number in Raleigh, NC. After filtering and quality control, 5661,
and trait heritability, the response to GS was 483% 1188, and 2780 SNP markers remained for the training
greater than response to MS, with an increase Rob- population, NB, and PA, respectively. A total of 1089
served as heritability and the number of QTL increasedand 1632 common SNP markers were used for inde-
[41]. Ultimately, based on our results, the potential of in- pendent validation with the NB and PA as VP, respect-
creasing genetic gains for yield can be achieved througlively. Imputation for missing data was done using the
combining GS with PS. expected maximization algorithmZ9] and implemented
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through the packagéerrBLUFP' [49] in R [50]. Genotype environments and replications. Genotype, environment,
data were converted into a numeric format for GS using and genotype by environment interactions were consid-
the ‘GAPIT’ package 1] in R. ered as random effects. Variance components were esti-
mated through PROC Mixed in SAS v 9.4.
Phenotypic data
Collection and analyses of the phenotypic data were de-Genomic selection model
scribed previously in 26]. Briefly, data consisted of BLUP Ridge regression best linear unbiased prediction
values derived from adjusted means evaluated based on §iRRBLUP) model was used for genomic selection (GS)
augmented design. Adjusted (least square) means for eadfirough the ‘rrBLUP package 49 in R. RRBLUP con-
genotype were estimated using a restricted maximum like-siders additive marker effects and is based on the infini-
lihood (REML) approach using the PROC MIXED func- tesimal model with all markers sharing a common
tion in SAS v.9.4%2]. The model used for calculating the variance and all effects are shrunken toward zero but al-
adjusted means was jY=p+Entry; +Loc +Entry; x lows for markers to have uneven effectg, [14, 53, 54].
Log + Block(LoG) + &ij, r'rBLUP" uses the function‘mixed.solvé which fits any
where Y is the trait of interesty is the mean effect; mixed model of the form:
Block is the effect of theith block; Entry corresponds
to the un-replicated genotypes; Lods the effect of the y=Xp+Zute
ith location; Entry x Log is the effect of genotype-by- a~ N(O7 Kazu%
environment interactions; BlocKLog) is the effect of
blocks nested within environments; anelis the standard ~ where X is a full-rank design matrix for the fixed ef-
normal errors. fects,B; Z is the design matrix for the random effects,
Measured traits included grain yield, plant height, K is a positive semidefinite covariance matrix, obtained
heading date, kernel number spiké, kernel weight from markers using'‘A.mat which is an additive relation
spike *, and thousand kernel weight were collected in matrix function; residuals are normal with a mean of
eight environments in Arkansas and Oklahoma, U.S. be-zero, with constant variance and and ¢ being statisti-
tween 2014 and 2015 planting seasons. Collection anaally independent49].
analyses of the phenotypic data for the PA were de-
scribed previously 18, 42). The PA was grown in three Genomic selection scenarios
growing seasons (20%12014) over twelve site-years in Two GS scenarios were evaluated in this study: (1) a
Arkansas (Fayetteville (FAY12, FAY13, FAY14); Marstandard single population cross-validation scheme
ianna (MAR13, MAR14), and Stuttgart (STU13; STU14);where the effects of different factors such as marker
and Georgia (Plains, GA; GAl2, GA13), Louisiananumber, size of the TP, relatedness between TP and VP,
(Baton Rouge, LA; LA13), and Texas (Farmersville, TXand fixed effect on accuracy were evaluated; and (2) in-
TX12, TX13) in a randomized complete block design dependent predictions, where the population in GS sce-
with two replications per site-year. Site-year groupingsnario 1 was used as a TP to predict grain yield in NB
based from previous site-regression analys&8§][were and PA.
used for PA as validation population for GS.
Grain yield data for NB was collected in five environ- Different factors affecting genomic selection accuracy
ments, including in Fayetteville (AR) during seasonsNumber of markers and size of the training population
2015, 2016 and 2017 (FAY15, FAY16, and FAY17), an@ubsets of markers with varying levels of significance,
Newport (AR) during 2016 and 2017 (NPT16 and namely, subset $55 (P < 0.15), S§10 (P < 0.10), and
NPT17) in a randomized complete block design with S o5 (P < 0.05) derived from genome-wide association
two replications per site year except for FAY15 thatanalysis were used to perform predictions to examine
had only one replication. Grain yield was recorded bythe effects of marker number on GS accuracy. To deter-
harvesting whole plots, weighing the grains, and adjust-mine the marker subsets, a total of 10 different TR €
ing for 13% moisture. BLUP across all locations (NB_219 lines) and VP N = 20 lines) sets were generated,
ALL), across Fayetteville (NB_FAY) and Newport (NB_and an independent association analyses using the
NPT) were used for NB as VP dataset for genomicGAPIT package $1] in R under a kinship-principal
prediction. component (K-PCQ model (with number of PC =3) was
Broad sense heritabilityH?) was calculated by using the performed with each TP and the ABLUP dataset. This
was done to preventinside trading effect, which occurs
when prediction accuracies are evaluated using QTL that
iances due to genotype, genotype-by-environment, andvere previously identified in the same group of lines, po-
error, respectively; e and r are the number of tentially resulting to overestimated accuraciesl4.

2
g2 95 2 2 2 _
formula:H* = P where &, ogg, andog are var
e er
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Whole genotype data were filtered fop-values corre- Response to selection for grain yield
sponding to marker S§:5 S$.10 and Sgos from each Response to selectionR for mean grain yield across
cycle of GWAS. Mean accuracy for each round ofeight site-years was calculated using the formuRe
GWAS-GS (total of 10cycles) for each marker subsetH?S[55], whereH? is the heritability for grain yield pre-
was recorded. Model performance using marker setsviously reported by Lozada et al2§], equal to 0.48; and
chosen at random was also evaluated, wherein three difSis the selection differential calculated as the difference
ferent sets corresponding to the average number ofbetween the population mean and mean of population
markers for S§15 S%.10 and S§ s (i.e. 820, 540, and with selection, S us — pp, under a selection intensity of
270 random SNP markers, respectively) were used fod0% (i.e. selecting the top 25 lines based on average
predictions. grain yield and genomic estimated breeding values
To test the effect of training population size on the ac- across all environments, 2014, and 2015 site-years). Se-
curacy for the evaluated traits, 50 different subsets of 25lection strategies included phenotypic selection (PS),
50, 75, 100, 125, and 150 lines were sampled as TP atraarker-based selection (MS), genomic selection (GS),
constant VP size of 60. Mean accuracy for each TP sizeandom selection (RS), and a combination of PS and GS
was recorded. (PS +GS). Mean for grain yield under P§p was cal-
culated based on the top 25 highest yielding linggys
Relatedness between training and validation population was equal to the mean grain Yleld of the lines having the
favorable alleles for three lociwsnp_Ex_c2723 5047696

and fixed effect in the model
The effects of relatedness between the training and valid-(3B)’ wsnp_Ex _c13849_2169824@8B), and wsnp_Ex_

. . . . c48922_53681502(4B), previously identified to be
ation population were evaluated by grouping the lines _. . . N : )
. ; o significantly associated with grain yield in the TR24;
based on corresponding membership coefficie@,values . . .
derived from STRUCTURE 6] and performing predic- HesWwas equal to the mean of lines having the highest es-
. . . timated breeding values (top 25 lines) in 10 different
tions where each subpopulation was used to predict the N :
o . rounds of GS under a 10-fold cross-validation in
grain yield and component traits of other subgroups. . N .
. . . RRBLUP, with TP size =144 linegirs Was computed
Given that there was an uneven number of lines belonging . X
. based on a function to generate 25 random selections,
to each of the subgroups, a subset of 50 and 30 lines Wereo i . .
. s 0 different times and calculating the mean for these se-
used as TP and VP, respectively, to perform predictions, ~ =~ . .
. ] . : lections; ugs + pswas equal to the mean of the lines with
Genotypes for major genes including growth habit genes . > i .
) . . the highest grain yield and estimated breeding values.
namely photoperiod Ppd-D1 and vernalization require-
ment (vrn-Al) were included in the model as fixed effect, _ _
either individually or in combination. GS accuracies with Supplementary information _
or without the presence of the fixed effect were compareds:PPementan information accompanies this paper bitps:/idol 0rg/10
under 10-fold cross-validations for TP size =144 lines
under different datasets- _BLUP for all environments Additional file 1: Table S1. Accuracy of genomic selection for
(ABLUP), BLUP for 2014 site-years (BLUP14), BLUP foll measured traits across different training population sizes at a constaht
2015 site—years (BLUP15), BLUP for northern environ- valida_tion populatipn sizé/E 60 lines)Table S2.Accuracy of_ge_nomic .
. R . selection across different marker subsets (SS) from association mapping
ments (Fayettew”e and Keiser, _AR’ Okml'”gee_' OK using BLUP across all environments (ABLUP) dadtalsket.S3.Accuracy
NBLUP) and BLUP for southern environments (Marianna, | of genomic selection for grain yield and yield components using infefred

Stuttgart, and Rohwer, AR; SBLUP). subgroupsQ from STRUQTURE aqalMslg S4.Accuracy usi_ng fixed_
effect @pd-D1 and vin-AT) in genomic selection model for grain yield in|
soft red winter wheafTable S5.Accuracy of genomic selection for graip

C - . . . yield using th¢NC-Neuse-Bésmd ‘Pioneer 26R61-AGS200@pping
Independent validation of genomic selection model using populations as validation sets.

biparental populations ’
The TP (N =239 lines) was used to predict grain yield o
in the PA (N=157 lines) and NB il = 100 lines) bj- Abbreviatons

X / GSGenomic selection; GY: Grain yield; KNS: Kernel numbet;spike
parental populations using RRBLUP model. Datasetkws: kernel weight spikeMS: Marker- based selection; NB: NC-Neuse

used for the training set were BLUP across all envi- Bessbiparental mapping population; PA: Pioneer Brand 26R&86S 2000
biparental mapping population; PS: Phenotypic selection; QTL: Quantitative

ronments (AB_LUP)’ across no_rthem (NBL_UP) anc_i trait loci; RS: Random selection; TKW: Thousand kernel weight; TP: Training

southern locations (SBLUP). Simple matching coeffi-population; VP: Validation population

cients between the training and validation populations

were calculated using the nominal clusteringhom-  Acknowledgments
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