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Abstract

Background: RNA sequencing (RNA-seq) technology has identified multiple differentially expressed (DE) genes
associated to complex disease, however, these genes only explain a modest part of variance. Omnigenic model
assumes that disease may be driven by genes with indirect relevance to disease and be propagated by functional
pathways. Here, we focus on identifying the interactions between the external genes and functional pathways,
referring to gene-pathway interactions (GPIs). Specifically, relying on the relationship between the garrote kernel
machine (GKM) and variance component test and permutations for the empirical distributions of score statistics, we
propose an efficient analysis procedure as Permutation based gEne-pAthway interaction identification in binary
phenotype (PEA).

Results: Various simulations show that PEA has well-calibrated type I error rates and higher power than the traditional
likelihood ratio test (LRT). In addition, we perform the gene set enrichment algorithms and PEA to identifying the GPIs
from a pan-cancer data (GES68086). These GPIs and genes possibly further illustrate the potential etiology of cancers,
most of which are identified and some external genes and significant pathways are consistent with previous studies.

Conclusions: PEA is an efficient tool for identifying the GPIs from RNA-seq data. It can be further extended to identify
the interactions between one variable and one functional set of other omics data for binary phenotypes.
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Background
RNA sequencing (RNA-seq) technology has identified
amounts of significant genes and given some evidence
for the diagnosis and treatment of complex disease,
especially cancers [1, 2]. Most of existing statistical
methods focus on identifying the differentially expressed
(DE) genes and heritability estimation by the RNA-seq
count data [3–7]. However, with the assumption that
only minority of genes associate with phenotypes, these
models inevitably lose the regulation information from

DE genes, thus are hard to elucidate the etiology and
mechanism [8–10]. Systematic characterization of the
biological function of genes represents an important step
for investigating the molecular mechanisms underlying
the identified disease associations. Enrichment analysis
methods are based on different ideas: some only inclu-
ding genes participating in pathways and some conside-
ring the regulations between genes in networks [11–14].
Furthermore, omnigenic model assumes that disease

may be driven by genes with indirect relevance to
disease and be propagated by functional pathways. These
external genes may cause the disease by distantly regu-
lating significant pathways and they may explain most
heritability [15]. For transcriptome data, one common
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sense is that the core gene effects can be understood by
their interactions within underlying pathways or any
expressed gene [16, 17]. As a result, identifying the inter-
actions between external genes and significant pathways
(GPIs) holds for further understanding of etiology and
improving the prediction ability [18].
Considering the potential importance of interactions in

defining the genetic architecture of complex traits and
inefficiency of traditional methods in high-dimensional
data, emerging statistical methods have been implemented
to identify interactions with low calculation resources [19].
Different algorithms use different ideas, such as set tests
[20, 21] and searching algorithms (exhaustive searching and
prioritization based on the gene set) [22, 23]. Due to lacking
confidence and biological priority and high-dimensional
searching spaces, these methods may lose power.
Moreover, the omnibus test is widely used to identify

the sets from both single and multiple levels, even from
different datasets [24–29]. The joint test is more efficient
and scalable because of low computational consumption,
reduction of the degree of freedom and no estimation of
variance components. On the other hand, kernel-based
methods have been proposed to estimate association of
genetic variants with complex traits [20, 28, 30–32]. A
general kernel machine method can account for complex
nonlinear genes and interactions effects. Though the
application of kernel-based methods in genome wide
association studies (GWASs) has been reported in the
literature, our method applies the idea to identify GPIs
of the transcriptome data [32, 33].
Here, noting the similarity between the mixed model

and kernel function, we develop a statistical test to identify
the GPIs for binary phenotypes. The model possibly solves
the two challenges. First, our model is testing the GPIs in
the binary phenotype framework. To do so, we firstly use
two enrichment analysis of RNA-seq data, including gene
set enrichment analysis (GSEA), DAVID and MinePath
[11–13]. Second, the model is quite similar to the garrote
kernel machine (GKM), but the parameter estimation pro-
cedure is quite different [20]. We refer to the statistical
method as the Permutation based gEne-pAthway inter-
action identification in binary phenotypes (PEA). We pro-
vide a method overview of PEA, including the parameter
estimation and hypothesis testing. Extensive simulations
show that compared to the traditional likelihood ratio test
(LRT) for generalized linear models, PEA has higher areas
under curve (AUCs) with controllable type I error rates.
In addition, the parameter estimation is more accurate.
We apply our method to analyze platelet RNA-seq data
from a case-control study (GSE68086) [1]. PEA can also
be applied to analyze other interactions in binary phe-
notypes, such as pathway-environment interactions. PEA
is implemented as a Rcpp function, freely available at
https://github.com/biostat0903/RNAseq-Data-Analysis.

Methods
Model
We model GPIs in binary phenotypes as following:

logit P y ¼ 1ð Þð Þ ¼ XβC þ
XP
j¼1

P jβP j þGβG

þ
XP
j¼1

P j∙G
� �

ξG j ð1Þ

where y indicates the binary phenotypes (i = 1,… , N), X,
an N ×m matrix, is supposed as the covariates, P, an
N × P matrix, is assumed as the expression levels in a
significant pathway, which can be calculated from some
gene enrichment analyses, Pj ∙G indicate the GPIs
(Fig. 1). We also suppose γ = P(y = 1). βC, βP, βG and ξG
are the coefficients of the covariates, functional pathway
genes, external gene and GPIs, respectively.
LRT based on chi-squared statistics is a traditional

method for testing of interactions for generalized linear
models. The chi-squared statistic is the multiplication of
− 2 by the logarithm of the ratio of likelihood of the full
model and that of the model without interactions.
Unfortunately, as the high-dimensional and compli-
cated relation of the variables, traditional methods are
always inefficient.

Garrote kernel machine (GKM)
A kernel function is suitable to suggest the complicated
relationship, including both linear and nonlinear relations,
between genes and phenotypes. Here, we extend the linear
GKM for the binary phenotype to identify the GPIs,
although many other kernel functions can be selected.
The kernel function is shown as following:

K Zk ;Zlð Þ ¼ 1þ δGkGlð Þ 1þ PkPlð Þ ð2Þ
where Zk = (Gk, Pk), K(Zk, Zl) is the kernel matrix of kth
and lth individuals. We then test for the effect of the
GPIs by considering the null hypothesis H0 : δ = 0.

Parameter estimation
With the kernel function, the Eq. (1) can be rewritten as
a semi-parametric model as follows:

logit P y ¼ 1ð Þð Þ ¼ XβC þ h ð3Þ
where h = (h1, h2, … , hN)

T is an unknown centered
smooth function vector. h can be parameterized for
different forms of GPIs, such as the Gaussian kernel and
d th ploynomial kernel. As the similarity between the
semi-parametric model and mixed effect model, the h
can be assumed as the random effects following a multi-
variate normal distribution Nð0; τKðδÞÞ . The relation-
ship between the unknown function and the kernel
function is as follows:
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hi ¼ h Zið Þ ¼
XN
l¼1

αiK Zi;Zlð Þ ¼ κTi α ð4Þ

where κTi ¼ ðKðZi;Z1Þ;KðZi;Z2Þ;…;KðZi;ZN ÞÞ and α is
an unknown scale parameter vector.

Integrating the kernel function and logistic regression,
the log-likelihood function is as following:

LML ¼ P yjβC ;hð Þ
¼

XN
i¼1

yi XiβC þ κTi α
� �

− log 1þ exp XiβC þ κTi α
� �� �� �

−
λ
2
αTKα

Furthermore, as the loss of the degree of freedom due to
the maximum likelihood estimation of fixed effects, the
estimate of the variance component τ is obtained by opti-
mizing the restricted maximum log-likelihood (REML)
function as following:

LREML ≈ −
1
2

log Vj j þ log XTVX
�� ��þ ~y−XβCð ÞTV−1 ~y−XβCð Þ

	 


where ~y ¼ XβCþKαþD−1ðy−γÞ and V =D−1 + τK. τ is
estimated by the Newton-Raphson algorithm with
damping factor ω = 0.5. The iteration formula is as
following:

τ tþ1ð Þ ¼ τ tð Þ−ωt ~y−XβCð ÞTV−1KV−1 ~y−XβCð Þ−tr QKð Þ
tr QKQKð Þ=2

where Q =V−1 −V−1X(XTV−1X)−1XTV−1 and t is the
iteration time.
α and βC is estimated by the Newton-Raphson algo-

rithm with normal equations as following:

XTD tð ÞX XTD tð ÞK
D tð ÞX τ−1I þD tð ÞK

� �
β tþ1ð Þ
C

α tþ1ð Þ

" #

¼ XTD tð Þ~y tð Þ

D tð Þ~y tð Þ

� �
ð5Þ

Hypothesis testing
As the similarity between the mixed model and semi-
parametric model, we propose a score test statistic U to
test δ:

U ¼ 1
2

~y−XβCð ÞTV−1 ∂V
∂δ

V−1 ~y−XβCð Þ

As the ∂V
∂δ is not a semi-definite matrix, U is not identi-

cally greater than zero. Its distribution is hard to use the
mixed chi-squared distribution to approximate. There-
fore, we propose a permutation test to obtain the empi-
rical distribution of U. Since the null hypothesis is δ = 0,
we permute the expression level of the external gene
and calculate the test statistic without re-estimation of
the βC, α and τ. The computation consumption is not
large, although we use a permutation test.

Simulation
Compared to the traditional LRT, simulations investigate
the statistical property of U and the estimation of βC.
Type I error rates and AUCs show the statistical pro-
perty of statistics. Means and standard errors indicate the
estimation property. The expressed levels of the functional
pathway are generated from correlated uniform distributions

Fig. 1 The illustration of GPI in binary phenotypes. The red line represents the effect of the significant pathway. The three black dot lines represent
three situations: positive interaction (L1), no interaction (L0) and negative interaction (L2)
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by a Copula function, and that of the external gene is ge-
nerated from a uniform distribution (Uð0; 1Þ). We study five
parameters in simulations: sample size (N), number of genes
in the functional pathway (v), correlation between genes in
the pathway (c), proportion of interaction genes (p) and odds
ratio (OR) of the external gene (s). Details are shown in the
Table 1. The interaction function h for the i th individual is
defined by a function g as following:

g Zið Þ ¼ g Zi1;Zi1;…;Zi1ð Þ ¼ 1þ
XP
j¼1

PijβP ij þ GiβG

þ
XP
j¼1

Pij∙Gi
� �

ξGij

h can be defined as linear and non-linear settings:
h(Zi) = g(Zi) and h(Zi) = g(Zi)

2.
We simulate 1000 times at the null hypothesis (s = 0)

and 100 times at the alternative hypothesis (s ≠ 0).
Combing the 900 P values randomly selected from the
null and 100 P values at the alternative, we can calculate
the AUC. For each loop, we permute the label 50,000
times to obtain robust results.

Real data analysis
We use our method to analyze RNA-seq data of 283
platelet samples (55 healthy donors and 228 tumor
samples) [1]. The tumor data is collected from six diffe-
rent cancers, including breast cancer (BrCa, n = 35),
non-small cell lung carcinoma (NSCLC, n = 60), glio-
blastoma (GBM, n = 39), colorectal cancer (CRC, n = 41),
pancreatic cancer (PAAD, n = 35) and hepatobiliary
cancer (HBC, n = 14). The covariates are gender and age.
We delete the individuals with missing data, and the
final sample size is 274. The tumor samples are regarded
as cases to perform pan-cancer analysis [1].
qTo ensure validity and reasonability, we follow the

data processing steps of the original paper. First, we
exclude the genes with total counts less than 5 and with
logarithmic counts per million (LogCPM) less than 3.
We only select 5003 genes for subsequent analysis.

Second, we use the trimmed mean of M-value (TMM)
normalization data for following analysis. Final, edgeR
with tagwise and common dispersion is applied to select
the external genes with the threshold of false discovery
rate (FDR) < 0.001. We can obtain 2500 DE genes,
including 1231 de-regulated and 1269 up-regulated genes.
After the filtering and normalizing, we perform

three gene enrichment methods to obtain the func-
tional pathways, including DAVID, GSEA and Mine-
Path. DAVID and GSEA are performed by both Gene
Ontology (GO) dataset and Kyoto Encyclopedia of
Genes and Genomes (KEGG) dataset [34, 35]. Mine-
Path is only based on KEGG dataset. The significant
pathways are defined with FDR < 0.001 of DAVID,
FDR < 0.25 of GSEA and FDR < 0.05 of MinePath. bio-
maRt package is used to map Ensembl ID to corre-
sponding Entez ID and gene symbol [36]. For the PEA
model, we normalize RNA-Seq data to the numbers be-
tween 0 and 1.

Results
Simulations
Simulations evaluate the performances of PEA and trad-
itional LRT by type I error rates and AUCs. In the type I
error simulations, we use four different settings: different
interaction function settings, N, v and c. In the power
simulations, we add s and p. For the type I error simula-
tions, the response variable is not affected by the effects
of the external gene and its interactions. All the results
are shown in Figs. 2, 3, 4 and 5 and Additional files 1
and 2. The significant level is set to be 0.05.
As expected, PEA controls type I error rates in all par-

ameter settings, but the traditional LRT fails. Especially,
in the non-linear setting, the type I error rates of PEA
are close to the significant level, which shows this
method properly controls the type I error rates. When
v = 30, the traditional LRT is inefficient because of the
unbalance between the number of variables and the
sample size setting.
As the traditional method is uncontrollable for type I

error rates, AUC is used to evaluate the performances of
the two methods in the alternative simulations. When
v = 10, it is clear that PEA is better than LRT in each
setting, especially for the non-linear scenarios. When
v = 20 and v = 30, the traditional LRT is better than
PEA with the non-linear settings and N = 100. Increasing s
and N improves power of PEA, but increasing p and c
decreases power of PEA. The linear settings possibly lead
to higher power. The minimum sample size is suggested
as 100 by the different N settings.

Real data analysis
After the enrichment analyses of DAVID and GSEA, we
obtain 67 functional pathways (Additional file 3). We

Table 1 Parameter settings used for the simulation data

Parameters Label Settings

sample size N 100, 200

number of genes in potential pathway v 10,20, 30

correlation between genes in pathway c 0, 0.25, 0.5

proportion of interaction genes p 0.8, 1.0

OR of core gene s 0, 1.5, 1.8, 2.0

OR of interactions exp(s)/2

OR of genes in potential pathway 1.2
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identify the GPIs between 2500 DE genes and four bio-
logical pathways: RNA processing (GO:0006396, size
= 285), RNA splicing (GO:0008380, size = 127), cyto-
solic ribosome (GO:0022626, size = 80) and cytoplasmic
translation (GO:0002181, size = 25). We identified 116,
109, 89 and 124 significant external genes for the different
pathways at the nominal level 0.05, respectively. After fil-
tering by the FDR < 0.2, the significant gene numbers are
10, 17, 54 and 83.
After the enrichment analyses of DAVID, GSEA

and MinePath, we obtain 2 functional pathways
(Additional file 4). We identify the GPIs between
2500 DE genes and two biological pathways: Platelet
activation (hsa04611, size = 70) and Fc gamma
R-mediated phagocytosis (hsa04666, size = 49). We
identified 468 and 475 significant external genes for
the two pathways at nominal level 0.05, respectively.
After filtering by the FDR < 0.2, the significant gene
numbers are 119 and 120.
As the different sizes of the four pathways, the power

is different for the four pathways. The result of FDR
controlling is similar to that of the simulations. Interes-
tingly, we define multiple same genes for the four GO
pathways, such as TUBB, BPI and CA1. Two KEGG
pathways also interact with 11 common genes, such as
SDCBP, TRAT1 and FABP4. The summary of the result
is shown in Table 2.

Discussion
Here, we present an effective semi-parametric ge-
neralized linear model, together with a computationally
efficient parameter estimation method and software im-
plementation of PEA, for identifying potential GPIs of
RNA-seq data in binary phenotypes. PEA models the
complicated relationship between gene expression and
traits using the kernel function. Because the kernel
machine can be adaptive for both linear and nonlinear in-
teractions, PEA controls type I error rates in the presence
of individual relatedness, and PEA achieves higher power
than the traditional method, LRT, across a range of set-
tings. In addition, PEA is available to other interactions of
different molecules, such as methylation and gene expres-
sion interactions, and biological or technical covariates
interactions. We have demonstrated the benefits of PEA
using both simulations and applications to recently pub-
lished RNA-seq datasets.
While PEA is an extension of the GKM, we note that

PEA exploits the GPIs in binary phenotypes and estimates
the parameters using the damping Newton-Raphson algo-
rithm. As most of medical studies are case-control design,
PEA identifies the GPIs for the binary traits. For example,
samples are collected from tumor tissue and normal
tissue, along with some covariates, such as age, gender
and so on. Two Newton-Raphson iterations accurately
estimate the coefficients of covariates (Fig. 5). GKM

a b

Fig. 2 Type I error rates of PEA and traditional LRT in different interaction function settings, N, v and c. a linear interaction function
settings; b nonlinear interaction function settings
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a

b

Fig. 3 AUCs of PEA and traditional LRT in different interaction function settings, N, c, s, p and v = 10. a linear interaction function settings
with p = 0.8 (left) and p = 1 (right); b nonlinear interaction function settings with p = 0.8 (left) and p = 1 (right)

Fig. 4 AUCs of PEA and traditional LRT in different sample size settings of different interaction function settings with c = 0.5, s = 2, p = 1 and v = 10
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estimates τ by the optimx function in R using the
Nelder-Mead method, which is not suitable for PEA.
In the real data analysis, the result of PEA can support

the assumption of omnigenic model. Although PEA goes
beyond the scope of enrichment analysis, efficient
enrichment analysis methods, such as MinePath, can
essentially provide the robust and reliable pathways before
conducting PEA. PEA identify not only some significant
GPIs, but also the external genes for different pathways.
Some significant genes are verified by multiple biological
studies. For example, using the data from The Cancer
Genome Atlas (TCGA), TUBB expression level influences
the survival time of renal and liver cancer [37]. Kelly et al.
demonstrate that the mutation of TUBB possibly cause
the tumor cell growth and taxane resistance for the pa-
tients with NSCLC [38]. From the result of PEA, TUBB

might be an important external gene, which associates
cancers by the interactions with amount significant
pathways.
Currently, despite the newly developed computation-

ally efficient statistical testing method, applications of
PEA can still be limited by its relatively heavy computa-
tional cost of permutations. Traditional permutation
tests increase the computation consumption with the
shuffling times, but the permutations of PEA are faster
than the standard permutation test because of no
parameter re-estimation in each shuffling. PEA can still
take close to 7 h with 5 CPUs to analyze a dataset of
the size of the GSE68086 which we considered here
(274 individuals ~ 2500 genes for one pathway). There-
fore, PEA will be used to analyze other datasets that
have large sizes.

Table 2 Summary of the external genes for the selected pathways

Database Pathway Size Top genesa

GO RNA processing 285 TUBB, H3F3B, SDCBP, NT5C2, FKBP5

GO RNA splicing 127 TUBB, IL1R2, H3F3B, IFNGR1, PCSK7

GO cytosolic ribosome 80 TUBB, CAMP, SAMM50, PSMD14, CHD8

GO Cytoplasmic translation 25 TUBB, SDCBP, H3F3B, CMAHP, SLC44A2

KEGG Platelet activation 70 STX7, PCNP, SDCBP, LEF1, TMEM140

KEGG Fc gamma R-mediated phagocytosis 49 STX7, PCNP, CGRRF1, SHOC2, EFTUD2
aTop five external genes for the significant pathway

a b

Fig. 5 Estimation of βC of PEA and traditional LRT in different settings of different interaction function settings, N, v and c. a linear settings;
b nonlinear settings
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Conclusions
PEA is an efficient and powerful statistical method for
identifying the GPIs from RNA-seq data. It can be
further extended to identify the interactions between
one variable and one functional set of other omics data
for binary phenotypes. Further work is needed to make
its widely use in more high-dimensional genomics data
analysis practice.
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