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Abstract 

Background We tackle the problem of estimating species TMRCAs (Time to Most Recent Common Ancestor), 
given a genome sequence from each species and a large known phylogenetic tree with a known structure (typi-
cally from one of the species). The number of transitions at each site from the first sequence to the other is assumed 
to be Poisson distributed, and only the parity of the number of transitions is observed. The detailed phylogenetic tree 
contains information about the transition rates in each site. We use this formulation to develop and analyze multiple 
estimators of the species’ TMRCA. To test our methods, we use mtDNA substitution statistics from the well-established 
Phylotree as a baseline for data simulation such that the substitution rate per site mimics the real-world observed 
rates.

Results We evaluate our methods using simulated data and compare them to the Bayesian optimizing software 
BEAST2, showing that our proposed estimators are accurate for a wide range of TMRCAs and significantly outperform 
BEAST2. We then apply the proposed estimators on Neanderthal, Denisovan, and Chimpanzee mtDNA genomes 
to better estimate their TMRCA with modern humans and find that their TMRCA is substantially later, compared to val-
ues cited recently in the literature.

Conclusions Our methods utilize the transition statistics from the entire known human mtDNA phylogenetic tree 
(Phylotree), eliminating the requirement to reconstruct a tree encompassing the specific sequences of interest. 
Moreover, they demonstrate notable improvement in both running speed and accuracy compared to BEAST2, par-
ticularly for earlier TMRCAs like the human-Chimpanzee split. Our results date the human – Neanderthal TMRCA to be 
∼ 408, 000 years ago, considerably later than values cited in other recent studies.

Keywords Divergence times, Time to most recent common ancestor (TMRCA), Mitochondrial DNA (mtDNA), BEAST2, 
Transition rates, Poisson parity, Ancient humans, Neanderthal, Denisovan, Chimpanzee

Background
Dating species divergence has been studied extensively 
for the last few decades using approaches based on 
genetics, archaeological findings, and radiocarbon dat-
ing [1, 2]. Finding accurate timing is crucial in analyz-
ing morphological and molecular changes in the DNA, 
in demographic research, and in dating key fossils. One 
approach for estimating the divergence times is based on 
the molecular clock hypothesis [3, 4] which states that 
the rate of evolutionary change of any specified protein 
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is approximately constant over time and different line-
ages. Subsequently, statistical inference can be applied to 
a given phylogenetic tree to infer the dating of each node 
up to calibration.

Our work focuses on this estimation problem and pro-
poses new statistical methods to date the TMRCA in a 
coalescent tree of two species given a detailed phyloge-
netic tree for one of the species with the same transition 
rates per site. Our work does not detect introgression 
events, and in cases of introgression [5] should be used 
alongside methods for introgression detection (e.g. [6]). 
We note that dating the TMRCA in a coalescent tree is 
different than finding the population tree divergence 
time. A discussion regarding the differences between the 
two is available in [7, 8]. Specifically, the discordance of 
nuclear and mtDNA histories [9] suggests the coalescent 
tree and population tree of humans may have a different 
topology.

We formulate the problem of dating the TMRCA by 
modeling the number of transitions ( A ↔ G,C ↔ T  ) 
in each site using a Poisson process with a different rate 
per site; sites containing transversions are neglected due 
to their sparsity (indeed, we include sparse transversions 
in the simulations and show that our methods are robust 
to their occurrences). The phylogenetic tree is used for 
estimating the transition rates per site. Hence, when con-
sidering two representative sequences, one from each 
population, our problem reduces to a binary sequence 
where the parity of the number of transitions of each site 
is the relevant statistic from which we can infer the time 
difference between them.

We can roughly divide the approaches to solving this 
problem into two. The frequentist approach seeks to 
maximize the likelihood of the observed data. Most 
notable is the PAML [10] package of programs for phy-
logenetic analyses of DNA and the MEGA software [11]. 
Alternatively, the Bayesian approach considers a prior of 
all the problem’s parameters and maximizes the posterior 
distribution of the observations. Leading representatives 
of the Bayesian approach are BEAST2 [12] and MrBayes 
[13], which are publicly available programs for Bayesian 
inference and model choice across a wide range of phylo-
genetic and evolutionary models.

In this work, we developed several distinct estimators 
from frequentist and Bayesian approaches to find the 
TMRCA directly. The proposed estimators differ in their 
assumptions on the generated data, the approximations 
they make, and their numerical stability. We explain each 
estimator in detail and discuss its properties.

A critical difference between our proposed solutions 
and existing methods is that we seek to estimate only 
one specific problem parameter. At the same time, soft-
ware packages such as BEAST2 and PAML optimize over 

a broad set of unknown parameters averaging the error 
on all of them (the tree structure, the timing of every 
node, the per-site substitution rates, etc.). Subsequently, 
the resources they require for finding a locally optimal 
instantiation of the tree and dating all its nodes can be 
very high in terms of memory and computational com-
plexity. Consequently, the number of sequences they can 
consider simultaneously is highly limited. Thus, unlike 
previous solutions, we utilize transition statistics from all 
available sequences, in the form of a previously built phy-
logenetic tree.

We develop a novel approach to simulate realistic data 
to test our proposed solutions. To do so, we employ Phy-
lotree [14, 15] – a complete, highly detailed, constantly 
updated reconstruction of the human mitochondrial 
DNA phylogenetic tree. In our work we assume all sub-
stitutions are specified by Phylotree (for an elaborate dis-
cussion regarding the correction of this claim see [16]). 
We sample transitions of similar statistics to Phylotree 
and use it to simulate a sequence at a predefined trajec-
tory from Phylotree’s root.

We then empirically test the different estimators on 
simulated data and compare our results to the BEAST2 
software. Our proposed estimators are calculated sub-
stantially faster while utilizing the transitions statistics 
from all available sequences (Phylotree considers 24,275 
sequences), unlike BEAST2 which can consider only 
dozens of sequences due to its complexity. Comparing 
with the ground truth, we show that BEAST2 slightly 
overestimates the TMRCA, while our estimates pro-
vide more accurate results. For larger TMRCAs such as 
the human-Chimpanzee, BEAST2 also has a larger vari-
ance compared to our methods. Finally, we use our esti-
mators to date the TMRCA (given in kya – kilo-years 
ago) of modern humans with Neanderthals, Denisovan 
and Chimpanzee based on their mtDNA. Surprisingly, 
the TMRCAs we find (human-Neanderthals ∼408 kya, 
human-Denisovans ∼841 kya, human-Chimpanzee ∼
5,010 kya) – are considerably later than those accepted 
today.

Methods
Estimation methods
First, we describe an idealized reduced mathematical 
formulation for estimating TMRCAs and our proposed 
solutions. In Estimating ancient TMRCAs using a large 
modern phylogeny section, we describe the reduction 
process in greater detail.

Consider the following scenario: we have a set of n 
Poisson rates, denoted as {�i}ni=1 where n ∈ N . Let �X be a 
vector of length n such that each element Xi is indepen-
dently distributed as Pois(�i) . Similarly, let �Y  be a vector 
of length n such that each element Yi is independently 
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distributed as Pois(�i · p) for a fixed unknown p. We 
denote �Z as the coordinate-wise parity of �Y  , meaning that 
Zi = 1 if Yi is odd and Zi = 0 otherwise. Our goal is to 
estimate p given �X and �Z.

Remark 1

Note that the number of unknown Poisson rate param-
eters n in the problem {�i}ni=1 grows with the number of 
observations {(Xi,Zi)}

n
i=1 . However, our focus is solely on 

estimating p, so additional observations do provide more 
information.

Remark 2
The larger the value of p · �i , the less information on p is 
provided in Zi as it approaches a Bernoulli distribution 
with a probability of 0.5. On the other hand, the smaller �i 
is, the harder it will be to infer �i from Xi . As a result, the 
problem of estimating p should be easier in settings where 
�i is high and p is low.

Preliminaries
First, we derive the distribution of Zi ; All proofs are pro-
vided in the Supplementary material (Section 1).

Lemma 1 Let Y ∼ Pois(�) and Z be the parity of Y. 
Then Z ∼ Ber( 12 (1− e−2�)).

We use this result to calculate the likelihood and log-
likelihood of p and �� given �X and �Z . The likelihood is 
given by:

and the log-likelihood is:

This result follows immediately from the independence 
of each coordinate.

Cramer‑Rao bound
We begin our analysis by computing the Cramer-Rao 
bound (CRB; [17, 18]). In Comparative study on raw sim-
ulations section, we compare the CRB to the error of the 
estimators.

(1)L
(
�X , �Z; p, ��

)
=

n∏

i=1

e−�i
�i

Xi

Xi!

1

2

(
1+ (−1)Zi e−2�ip

)
,

(2)

l
(
�X , �Z; p, ��

)
=

n∑

i=1

[
−�i + Xi log �i + log

(
1+ (−1)Zi e−2�ip

)]
+ Const.

Theorem  1 Denote the Fisher information matrix 
for the estimation problem above by I ∈ R

(n+1,n+1) , 
where the first n indexes correspond to {�i}ni=1 and the 
last index (n+ 1) corresponds to p. For clarity denote 
Ip,p

.
= In+1,n+1, Ii,p

.
= Ii,n+1, Ip,i

.
= In+1,i . Then:

Consequently, an unbiased estimator p̂ holds:

If ∀i = 1..n : �i = � , we can further simplify the 
expression:

The CRB, despite its known looseness in many prob-
lems, provides insights into the sensitivity of the error 
to each parameter. This expression supports our previ-
ous observation that the error of an unbiased estima-
tor increases exponentially with mini{�i · p} . However, 
for constant �i · p , the error improves for higher values 
of �i . We now proceed to describe and analyze several 
estimators for p.

Method 1 ‑ maximum likelihood estimator

Proposition 1 Following equation  1, the maximum 
likelihood estimators p̂, ˆ�i hold:

Proposition 1 provides n separable equations for maxi-
mum likelihood estimation (MLE). Our first estimator 
sweeps over values of p̂ (grid searching in a relevant 
area) and then for each i = 1..n finds the optimal ˆ�i 
numerically. The solution is then selected by choosing 
the pair (p̂, {ˆ�i}ni=1) that maximizes the log-likelihood 
calculated using equation 2.

The obtained MLE equations are solvable, yet, finding 
the MLE still requires solving n numerical equations, 
which might be time-consuming. More importantly, 
MLE estimation is statistically problematic when the 
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1
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number of parameters is of the same order as the num-
ber of observations [19]. Subsequently, we propose 
alternative methods that may yield better practical 
results.

Method 2 ‑ �i‑conditional estimation
We propose a simple estimate of �� based solely on Xi , fol-
lowed by an estimate of p as if �� is known, considering 
only �Z . This method is expected to perform well when 
�i values are large, as in these cases, Xi conveys more 
information about �i than Zi . This approach enables us to 
avoid estimating both �� and p simultaneously, leading to 
a simpler numerical solution.

When p ≤ 1 , we can mimic Yi ’s distribu-
tion as a sub-sample from Xi , i.e. we assume that 
Yi|Xi ∼ Bin(n = Xi, p) . Then, we find the maximum like-
lihood estimate of p:

Proposition 2 If Yi|Xi ∼ Bin(Xi, p) , then: 

1. Yi ∼ Pois(�i · p) , which justifies this approach.
2. Zi|Xi ∼ Ber

(
1
2

(
1− (1− 2p)Xi

))
 , so we can compute 

the likelihood of p without considering �i.
3. The maximum likelihood estimate of p given 

n∑
i=1

Zi 

holds: 

Remark 3
We use the maximum likelihood estimation of p given ∑n

i=1 Zi by applying Le-Cam’s theorem [20]. This elimi-
nates the need for a heuristic solution of the pathological 
case Xi = 0,Zi = 1.

Method 3 ‑ Gamma distributed Poisson rates
The Bayesian statistics approach incorporates prior 
assumptions about the parameters. A common prior for 
the rate parameters �� is the Gamma distribution, which 
is used in popular Bayesian divergence time estimation 
programs such as MCMCtree [10], BEAST2 [12], and 
MrBayes [13]. Specifically, we have �i ∼ Ŵ(α,β) , and for 
p, we use a uniform prior over the positive real line.

Proposition 3 Let �i ∼ Ŵ(α,β) , then the maximum a 
posteriori estimator of p holds:

(7)
n∑

i=1

(
1− 2p̂

)Xi
= n− 2

n∑

i=1

Zi

Subsequently, given estimated values for α and β , we 
can find an estimator for p numerically to hold Equa-
tion  8. Unfortunately, the derivative with respect to α 
does not have a closed-form expression, nor is it possi-
ble to waive the dependence on �Z, p . Hence, we suggest 
using Negative-Binomial regression [21] to estimate α 
and β given �X .

Estimating ancient TMRCAs using a large modern 
phylogeny
In this section, we apply the methods described in Esti-
mation methods section to estimate the non-calibrated 
TMRCAs of humans and their closest relatives by com-
paring mitochondrial DNA (mtDNA) sequences. Our 
approach assumes the following assumptions: 

1. Molecular clock assumption - the rate of accumu-
lation of transitions (base changes) over time and 
across different lineages is constant, as first proposed 
by Zuckerkandl and Pauling [3] and widely used since.

2. Poisson distribution - The number of transitions 
along the human and human’s closest relatives 
mtDNA lineages follows a Poisson distribution 
with site-dependent rate parameter �i per time unit 
(implying that the rate of accumulation of transitions 
is independent of the time since the last transition).

3. No transversions - We only consider sites with no 
transversions and assume a constant transition rate 
per site ( �i,A→G = �i,G→A , or �i,T→C = �i,C→T).

4. Independence of sites - The number of transitions at 
each site is independent of those at other sites.

5. Phylogenetic tree - The phylogenetic tree presented in 
the Phylotree database includes all transitions and trans-
versions that occurred along the described lineages.

As the Phylotree database is based on tens of thousands 
of sequences, the branches in the tree correspond to rela-
tively short time intervals, making multiple mutations 
per site unlikely in each branch [22]. However, when 
considering the mtDNA sequence of other species, the 
branches in the tree correspond to much longer time 
intervals, meaning that many underlying transitions are 
unobserved. For instance, when comparing two human 
sequences that differ in a specific site, Phylotree can 
determine whether the trajectory between the sequences 
was A → G , A → G → A → G , or A → T → G . How-
ever, when comparing sequences of ancient species, an 

(8)
∂l

∂p
=

n∑

i=1

Xi + α

(−1)Zi

(
1+

2p
β+1

)Xi+α

+ 1

= 0
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elaborate phylogenetic tree like Phylotree is not available, 
making it impossible to discriminate between these dif-
ferent trajectories.

We use the following notation: 

1. Let �XmtDNA denote the number of transitions 
observed at each site along the human mtDNA phy-
logenetic tree as described by Phylotree. Each coordi-
nate corresponds to a different site out of the 16,569 
sites. The number of transitions at site i, XmtDNA,i , 
follows a Poisson distribution with parameter �i.

2. Let �Y  denote the number of transitions between two 
examined sequences (e.g. a modern human and a 
Neanderthal). We normalize the length of the tree 
edges so that the sum of all Phylotree’s edges is one. 
The estimated parameter p relates to the edge dis-
tance between the two examined sequences. Subse-
quently, Yi follows a Poisson distribution with param-
eter �i · p.

3. Let �Z denote the parity of �Y .

Using �X and �Z , we can estimate p using the methods in 
Estimation methods section. The TMRCA is given by: 
1
2 (Tsequence 1 + Tsequence 2 + p) when Tsequence 1,2 are the 
estimated times of the examined sequences measured in 
(uncalibrated) units of phylotree’s total tree length. For 
clarity, we summarize the process described in this sec-
tion in Fig. 1.

Calibration
Our methods output p, which is the ratio of two values: 

1. The sum of the edges between the two examined 
sequences and their most recent common ancestor 
(MRCA).

2. The total sum of Phylotree’s edges.

Similarly to BEAST2, to calibrate p to years, we use the 
per-site per-year substitution rate for the coding region 
given in [23] µ = 1.57 x 10E-8. We then calculate the 
total sum of Phylotree’s edges in years by dividing the 
average number of substitutions in the coding region per 
site (1.4) by µ.

Results
Comparative study on raw simulations
To compare the performance of the three estimation 
methods described in Estimation methods section, 
we conducted experiments using simulated data. The 
Poisson rates � were generated to reflect the substitu-
tion rates observed in mtDNA data using either a Cat-
egorical or a Gamma distribution. The parameters for 
the Gamma distribution ( α = 0.23,β = 0.164 ) were 
estimated directly from the data, while the parameters 
for the Categorical distribution were chosen such that 
both distributions have the same mean and variance. 
One of the Categorical values ( ǫ = 0.1 ) corresponds 

Fig. 1 We use a large, comprehensive phylogeny, such as Phylotree, and assume its tree topology and branch lengths are known. We also assume 
that the phylogeny is detailed enough so that it describes all the substitutions that occurred between its sequences. From this detailed phylogeny, 
we extract a list of the number of transitions and transversions that occurred in each site along the phylogeny to get �XmtDNA (composed 
of the number of transitions that occurred at each site) and a list of phylogeny transversion sites - sites in which at least one transversion occurred 
along the phylogeny. We aim to estimate the distance between two sequences that are not necessarily part of the tree and may be much more 
distant than branch tree lengths. To do so, we extract a binary vector �Z that states for each site whether the sequences are identical ( zi = 0 , marked 
black) or different ( zi = 1 , marked orange). We check in which sites a transversion must have occurred between the two sequences (marked blue) 
and remove these sites from �XmtDNA and �Z , thus shortening these vectors. We do the same for the phylogeny transversion sites
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to the rate of low activity sites in the mtDNA data. 
The other value ( a = 11.87 ) and the probabilities 
(0.11,  0.89) were chosen accordingly. To test the 
robustness of our methods, we have also conducted 
simulations using the celebrated K2P [24] and TN93 
[25] substitution models, with rate matrix param-
eters and site scaling extracted from Phylotree’s data. 
Further simulation details appear in the Supplemen-
tary material, Section 2.1. The comparison results are 
shown in Fig.  2 with the Cramer-Rao bound for ref-
erence. To provide a qualitative comparison, we per-
formed a one-sided paired Wilcoxon signed rank test 
on every pair of models, correcting for multiple com-
parisons using the Bonferroni correction. Our results 
show that Method 2 has the lowest squared error while 
Method 1 has the highest squared error, for all distri-
butions and substitution models. It is noteworthy that 
although Method 3 assumes a Gamma distribution, it 
still performs well even when a model mismatch exists.

Phylogenetic tree simulations
We validated our methods by testing their performance 
in a more realistic scenario of simulating a phylogenetic 
tree. Our methods take as input the observed transi-
tions along Phylotree ( �XmtDNA ) using all of its 24,275 
sequences and a binary vector �Z denoting the differ-
ences between two sequences, which we aim to estimate 
the distance between. We compared our methods to the 
well-known BEAST2 software [12], which, similarly to 
other well-established methods (such as MCMCtree [10], 
MrBayes [13], etc.) considers sequences along with their 
phylogenetic tree to produce time estimations. The soft-
ware BEAST2 performs Bayesian analysis using MCMC 
to average over the space of possible trees. However, it is 
limited in its computational capacity, so it cannot handle 
a large number of sequences like those in Phylotree. For 
this reason, we used a limited set of diverse sequences, 
including mtDNA genomes of 53 humans [26], the 
revised Cambridge Reference Sequence (rCRS) [27], the 

Fig. 2 Box-plot of the log squared estimation errors of the three proposed methods for selected values of p, expressed as a percentage of the total 
length of Phylotree’s edges (outliers are marked with ∗ ). The simulations were run 10, 000 times for each value of p. The CRB is shown in black 
for reference and the circles represent the log of the mean values which are comparable to the CRB. The experiments were conducted for two 
different distributions of � and two different substitution models: (Top left) Categorical distribution with two values: ǫ = 0.1 with probability η = 0.11 
and a = 11.87 with probability 1− η.(Top right) Gamma distribution with parameters α and β . (Bottom left) Site-scaled K2P substitution model. 
(Bottom right) Site-scaled TN93 substitution model
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root of the human phylogenetic mtDNA tree, termed 
Reconstructed Sapiens Reference Sequence (RSRS) [28], 
and 10 ancient modern humans [23]. More details about 
the parameters used by BEAST2 are available in the Sup-
plementary material, Section 2.3. To evaluate our meth-
ods, we added a simulated sequence with a predefined 
distance from the RSRS.

Our aim is to generate a vector �� that produces a vector 
�X that has a similar distribution to �XmtDNA . The human 
mtDNA tree has 16,569 sites, of which 15,629 have no 
transversions. The MLE of �i at each site is the observed 
number of transitions, XmtDNA,i . However, simulating �� 
as �XmtDNA leads to an undercount of transitions because 
10,411 sites ( 67% of the total number of sites considered) 
had no transitions along the tree and their Poisson rate is 
taken to be zero. To mitigate this issue, the rates for these 
sites were chosen to be ǫ , the value that minimizes the 
Kolmogorov-Smirnov statistic [29, 30] (details are pro-
vided in the Supplementary material, Section 2.2).

The results are presented in Fig. 3. Similarly to Fig. 2, 
Method 1 has a larger error than Methods 2 and 3 for 

values of p within the simulated region, and the gap wid-
ens with increasing p. Methods 2 and 3 provide the best 
results for the entire range of p. Compared to Methods 2 
and 3, BEAST2 is less accurate and has a larger variance 
for higher values of p. Additionally, BEAST2 has a much 
longer running time (roughly 1 hour) compared to our 
methods (less than a second). BEAST2 simulation pre-
sented here was conducted using a fixed tree topology. 
The results for a simulation without a fixed tree topology 
(running time ∼ 1.5 hours) are presented in Supplemen-
tary Fig. 2. Furthermore, to test the effect of additional 
sequences, we conducted simulations with an additional 
50 human sequences for selected values of p and a fixed 
tree topology (running time ∼ 3 hours). Supplementary 
Fig. 3 presents a comparison of estimation errors for var-
ious BEAST2 estimators compared to Method 2. Finally, 
to examine the effect of removing transversion sites, we 
conducted simulations with different ti/tv ratios show-
ing that decreasing the ti/tv ratio does not result in bias 
(Supplementary Fig. 4).

Fig. 3 Comparison of our methods with BEAST2 estimator using simulated data. The right plot shows a zoom-in view of the left plot, focusing 
on values of p between 0 and 20% . Each point in the plot represents the average of 5 runs, while the shaded regions indicate the range 
of estimations obtained. We note that in order to compare to our methods we only present here point estimates for BEAST2 (posterior means) 
and not the HPD of the full posterior distribution
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Fig. 4 We used the following schema to obtain estimates for the time distance between real-world sequences: We first extracted �XmtDNA 
from Phylotree. Then, we determined the binary vector �Z that denotes the differences between the RSRS and the sequence in consideration. 
We removed from both �XmtDNA and �Z the phylogeny transversion sites and sequences transversion sites as explained in Fig. 1. We applied our 
estimation methods using �XmtDNA and �Z as input to get uncalibrated p and calibrated p as explained in Calibration section. Finally, the TMRCA 
of the examined sequence and humans is given by TMRCA =

1
2
(TRSRS + TSequence + pcalibrated)

Table 1 Uncalibrated distances between modern humans and selected hominins

Uncalibrated distances expressed as a percentage of the total length of Phylotree’s edges, as determined by our methods compared with BEAST2. The values 
correspond to p, and indicate the estimation’s location in Fig. 3. In the parentheses, we provide the standard deviation for each estimator, obtained from 
bootstrapping 100 site samples for every modern human – ancient sequence pair in the dataset. Note that the BEAST2 values presented here were de-calibrated as 
described in Calibration section

Sample BEAST2 Method 1 Method 2 Method 3

Altai 0.98 (±0.08) 0.8 (±0.08) 0.79 (±0.08) 0.79 (±0.08)

Denisova15 0.99 (±0.08) 0.81 (±0.08) 0.8 (±0.08) 0.8 (±0.08)

HST 0.99 (±0.07) 0.78 (±0.08) 0.78 (±0.08) 0.77 (±0.08)

Mezmaiskaya1 1.03 (±0.08) 0.86 (±0.09) 0.85 (±0.09) 0.85 (±0.09)

Chagyrskaya08 1.04 (±0.08) 0.84 (±0.09) 0.83 (±0.09) 0.83 (±0.08)

ElSidron1253 1.06 (±0.08) 0.83 (±0.08) 0.82 (±0.08) 0.82 (±0.08)

Vindija33.17 1.08 (±0.08) 0.86 (±0.09) 0.85 (±0.09) 0.85 (±0.09)

Feldhofer1 1.09 (±0.08) 0.85 (±0.09) 0.84 (±0.08) 0.83 (±0.08)

GoyetQ56-1 1.09 (±0.08) 0.88 (±0.09) 0.88 (±0.09) 0.87 (±0.09)

GoyetQ57-2 1.09 (±0.08) 0.84 (±0.09) 0.83 (±0.08) 0.83 (±0.08)

Les Cottes Z4-1514 1.09 (±0.08) 0.91 (±0.09) 0.91 (±0.09) 0.9 (±0.09)

Mezmaiskaya2 1.09 (±0.08) 0.84 (±0.09) 0.83 (±0.09) 0.83 (±0.08)

Vindija33.16 1.09 (±0.08) 0.87 (±0.09) 0.86 (±0.09) 0.86 (±0.09)

Vindija33.25 1.09 (±0.08) 0.85 (±0.09) 0.84 (±0.09) 0.83 (±0.09)

GoyetQ305-7 1.09 (±0.08) 0.89 (±0.09) 0.89 (±0.09) 0.88 (±0.09)

GoyetQ374a-1 1.09 (±0.08) 0.89 (±0.09) 0.89 (±0.09) 0.88 (±0.09)

Spy 94a 1.09 (±0.08) 0.88 (±0.09) 0.88 (±0.09) 0.87 (±0.09)

Sima de los Huesos 1.79 (±0.11) 1.42 (±0.12) 1.39 (±0.11) 1.39 (±0.11)

Denisova2 2.02 (±0.12) 1.68 (±0.13) 1.65 (±0.12) 1.64 (±0.12)

Denisova8 2.06 (±0.12) 1.69 (±0.13) 1.66 (±0.13) 1.65 (±0.12)

Denisova4 2.18 (±0.12) 1.83 (±0.14) 1.79 (±0.13) 1.78 (±0.13)

Denisova3 2.19 (±0.12) 1.82 (±0.13) 1.78 (±0.13) 1.77 (±0.13)

Chimpanzee 16.33 (±1.22) 12.75 (±0.68) 11.21 (±0.53) 11.21 (±0.53)
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Real data results
As the final step of our experiments, we apply our meth-
ods to real-world data to determine the TMRCA of the 
modern human and Neanderthal, Denisovan, and chim-
panzee mtDNA genomes. A schema of our estimation 
process is provided in Fig. 4. Table 1 displays the uncali-
brated distances between modern humans and each 
sequence, compared to the estimates from BEAST2. The 
presented TMRCA represents an average of the TMRCA 
obtained from 55 modern human mtDNA sequences 
of diverse origins [26]. Table  2 presents the TMRCA in 
kya (kilo-years ago) of the modern human and each 
sequence. We note that if some of the modern human 
sequences were very close to one another, a weighted 
average would be more appropriate, considering the 
proximity of sequences and giving sequences closer to 
one another a smaller weight. As the sequences in our 
case are from diverse origins, a uniform average is a good 
approximation. An alternative strategy to calculating the 

average TMRCA with all human mtDNA sequences is to 
use the RSRS instead. Moreover, we can use the MRCA of 
Neanderthals instead of using all Neanderthal sequences 
and the same for any other population with a confidently 
known MRCA, resulting in one estimate instead of mul-
tiple pairwise estimates. This strategy involves combining 
different possibly noisy TMRCAs (one for each popula-
tion and one for the distance between the populations).

The estimates from real-world sequences presented in 
Table 1 are consistent with those obtained for the simu-
lated dataset in Phylogenetic tree simulations section. For 
low values of p, our three methods all produce similar 
estimates while BEAST2’s has a slightly higher estimate. 
For the human-Chimpanzee uncalibrated distance, which 
is relatively high, Method 1 provides a higher estimate 
than that obtained by Methods 2 and 3, and BEAST2 
provides a substantially higher estimate. The results 
in Table  2 show the TMRCA estimates, which are sig-
nificantly smaller for our methods than those obtained 

Table 2 Estimated TMRCAs of modern human and selected hominins

The table displays the estimated TMRCAs (in kya) between modern humans and selected hominins, as determined by our methods and compared with BEAST2. The 
standard deviation, which arises from a combination of the standard deviation of our methods and the sample dating, is given in parentheses. It’s important to note 
that BEAST2 calculates the TMRCA for all sequences in the same clade as a single estimate, while our methods estimate the TMRCA for each sample individually by 
taking the average of estimations derived from comparing the sample with every modern human sequence in the dataset

Sample BEAST2 Method 1 Method 2 Method 3

Altai 425.75 (±39.9) 423.51 (±39.47) 421.09 (±39.02)

Denisova15 427.61 (±39.38) 425.13 (±38.91) 422.75 (±38.54)

HST 414.19 (±40.78) 411.68 (±40.34) 409.72 (±39.95)

Mezmaiskaya1 430.56 (±41.13) 428.13 (±40.6) 425.64 (±40.28)

Chagyrskaya08 416.76 (±39.93) 414.23 (±39.36) 411.74 (±39.07)

ElSidron1253 403.37 (±38.1) 400.94 (±37.58) 398.43 (±37.23)

Vindija33.17 410.96 (±39.74) 408.44 (±39.19) 406.05 (±38.86)

Feldhofer1 399.36 (±38.45) 396.93 (±37.91) 394.37 (±37.59)

GoyetQ56-1 416.06 (±39.76) 413.6 (±39.11) 411.1 (±38.86)

GoyetQ57-2 394.71 (±38.28) 392.28 (±37.78) 389.72 (±37.43)

Les Cottes Z4-1514 428.91 (±41.04) 426.3 (±40.42) 423.95 (±40.07)

Mezmaiskaya2 395.99 (±38.64) 393.58 (±38.11) 391.02 (±37.74)

Vindija33.16 409.84 (±39.4) 407.47 (±38.81) 404.79 (±38.53)

Vindija33.25 399.91 (±39.27) 397.48 (±38.74) 394.92 (±38.4)

GoyetQ305-7 418.16 (±40.35) 415.45 (±39.69) 413.3 (±39.4)

GoyetQ374a-1 418.16 (±39.72) 415.45 (±39.07) 413.3 (±38.8)

Spy 94a 415.03 (±40.47) 412.57 (±39.83) 410.07 (±39.55)

Humans-Neandertals 507.13 (±33.86) 410.46 (±37.12) 408.02 (±36.78) 405.67 (±36.29)
Sima de los Huesos 850.67 (±66.75) 840.25 (±65.49) 837.38 (±65.06)

Denisova2 866.15 (±60.08) 851.42 (±57.98) 847.86 (±57.63)

Denisova8 850.67 (±61.93) 835.27 (±59.65) 832.22 (±59.4)

Denisova4 860.43 (±62.55) 843.23 (±60.36) 838.71 (±59.91)

Denisova3 853.07 (±60.73) 836.1 (±58.52) 831.41 (±58.13)

Humans-Denisovans-Sima 1,017.98 (±53.56) 856.2 (±54.75) 841.26 (±52.89) 837.52 (±52.29)
Humans-Chimpanzee 7,292.72 (±545.48) 5,693.51 (±302.59) 5,009.78 (±235.05) 5,005.39 (±237.13)
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from BEAST2 for human-Neanderthals and human-
Denisovans. For example, BEAST2 estimated the human 
– Sima de los Huesos – Denisovans TMRCA as ∼ 1, 018 
kya, while our best-performing method (2) estimated it 
as ∼ 841 kya. This TMRCA is estimated as (540-1,410 
kya) in [31]. Similarly, BEAST2 estimated the human – 
Neanderthal TMRCA as ∼ 507 kya, while our methods 
estimated it as ∼ 408 kya. Preceding literature estimates 
this time closer to ours ( ∼400 kya [32–34]) while recent 
literature provides a much earlier estimate ( ∼800 kya 
[35]). Finally, BEAST2 estimates the human-Chimpanzee 
TMRCA as ∼ 7, 293 kya whereas our estimate is ∼5,010 
kya, both are close to the literature value of 5 – 8 million 
years ago [36–39].

Conclusions
We investigated an estimation problem arising in sta-
tistical genetics when estimating the TMRCA of spe-
cies. The problem’s formulation, estimating Poisson 
rates from parity samples, leads to multiple estimators 
with varying assumptions. We calculated the CRB for 
this estimation problem and compared our methods 
against commonly used BEAST2 in different empirical 
settings, including a simple sampling scheme (Compar-
ative study on raw simulations section), a more elabo-
rate generative scheme based on real-world mtDNA 
data (Phylogenetic tree simulations section), and the 
calculation of the TMRCA of modern humans and 
other hominins using their mtDNA genomes (Real data 
results section).

Our results indicate that our proposed methods are 
significantly faster and more accurate than BEAST2, 
especially for earlier TMRCAs such as the human-
Chimpanzee. Our methods utilize the transition 
statistics from the entire known human mtDNA phy-
logenetic tree (Phylotree) without the need for recon-
structing a tree containing the sequences of interest. 
Our results show that the human – Neanderthal 
TMRCA is ∼ 408, 000 years ago, considerably later than 
the values obtained by BEAST2 ( ∼ 507, 000 years ago) 
and other values cited in the literature.
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