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with hypertension have been diagnosed and treated [2]. 
As the disease progresses to the clinical stage, it can 
cause serious damage to the heart, brain, kidneys, and 
other organs, making it one of the main contributors to 
premature death. Therefore, it is of great significance to 
understand the pathogenesis and new prevention targets 
of hypertension.

Metabolites in the blood are important substances that 
reflect the biological physiological state. As genes and 
the environment change, the concentration of metabo-
lites will also change, resulting in individual differences 
[3]. Increasing research supports the notion that hyper-
tension is a metabolic disease [4]. Studies conducted on 
hypertensive animal models have demonstrated altera-
tions in specific metabolites found in the serum and urine 
of hypertensive mice [5]. Yanan et al. comprehensively 
analyzed metabolic changes occurring at different stages 

Introduction
Hypertension is a chronic disease in which arterial 
blood pressure increases continuously and involves a 
variety of cells or organs [1]. Hypertension has no typi-
cal symptoms in its early stages and is often overlooked. 
It is estimated that 1.28  billion adults aged 30–79 years 
worldwide have hypertension, and less than half of adults 
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Abstract
Hypertension, commonly referred to as high blood pressure, is a chronic medical condition characterized by 
persistently elevated blood pressure levels. It is a prevalent global health issue, affecting a significant portion of the 
population worldwide. Hypertension is often asymptomatic, making it a silent but potentially dangerous condition 
if left untreated. Genetic instruments for 1,091 were from a recent comprehensive metabolome genome-wide 
association study (GWAS). Summary statistics of diastolic blood pressure (DBP) and systolic blood pressure (SBP) 
involving 757,601 sample size were analyzed. Two-sample Mendelian Randomization (MR) was conducted to assess 
causal effect of metabolites on DBP and SBP risk, and reverse MR analysis was performed to identify the DBP/
SBP causal effect on blood metabolites. Twelve and twenty-two metabolites were identified to be associated with 
DBP and SBP, respectively. Sensitive analysis showed four metabolites had robustness association on BP. Reverse 
MR demonstrated DBP and SBP could decrease the tricosanoyl sphingomyelin (d18:1/23:0)* level and increase 
the 2-hydroxyhippurate (salicylurate) level in blood, respectively. Our findings reveal an association between 
blood metabolites and blood pressure (DBP and SBP), suggesting potential therapeutic targets for hypertension 
intervention.
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of hypertension in a rat model [6]. However, although 
these association studies have provided valuable insights, 
confirming the exact relationship between hyperten-
sion and metabolites in humans is challenging due to 
confounding factors and reverse causality. To address 
this, our study aims to employ a two-sample Mendelian 
randomization analysis to evaluate the potential causal 
relationship between blood metabolites and the risk of 
hypertension in human. By utilizing genetic variations as 
instrumental variables, this approach explores the causal 
link between exposure (blood metabolites) and the out-
come (hypertension). We conducted a Mendelian ran-
domization analysis utilizing the latest comprehensive 
genome-wide association study (GWAS) summary statis-
tics of blood metabolites to assess their causal relation-
ship with diastolic and systolic blood pressure, providing 

insights into potential therapeutic targets for intervening 
in hypertension.

Materials and methods
Study design
The study design is depicted in Fig. 1, providing an over-
view of the current study. The methods employed and the 
characteristics of the study participants are elaborated 
upon in the following sections.

Genetic variants linked to metabolite levels were 
obtained from a comprehensive genome-wide associa-
tion study (GWAS) conducted on the Canadian Longi-
tudinal Study on Aging (CLSA) cohort. These genetic 
variants were then employed as instrumental variables 
(IVs) to assess the relationship between metabolite levels 
and hypertension traits.

Fig. 1 Overview of this MR study

 



Page 3 of 8Dai et al. BMC Genomic Data           (2023) 24:79 

Data source for blood metabolome and hypertension
A recent extensive genome-wide association study 
(GWAS) from Canadian Longitudinal Study on Aging 
(CLSA) cohort focused on investigating the relation-
ship between single nucleotide polymorphisms (SNPs) 
and the human metabolome. In the study [7], research-
ers analyzed data on 1,091 metabolic traits (Table S1), 
examining a total of 8,299 participants and approxi-
mately 15.4  million SNPs. By extracting summary-level 
information from this study, valuable insights into the 
associations between genetic variations and the human 
metabolome were obtained for instrumental variables 
(IVs).

The summary statistics for GWAS of the diastolic 
blood pressure (DBP) and systolic blood pressure (SBP) 
were obtained from Evangelou et al. study, including UK 
Biobank (UKB) genome-wide association study (GWAS) 
and International Consortium for Blood Pressure (ICBP) 
GWAS. The UKB data involved in a total of 458,577 UKB 
participants genotyped using a custom Affymetrix UK 
Biobank Axiom Array chip or custom Affymetrix UK 
BiLEVE Axiom Array chip. The ICBP GWAS comprises a 
comprehensive collection of 77 individual studies, includ-
ing Age, gene/Enviroment Susceptibility-Reykjavik Study 
(AGES), Atherosclerosis Risk in Communities (ARIC), 
Austrian Stroke Prevention Study (ASPS), British 1958 
birth cohort (B58C), Busselton Health Study (BHS), Car-
diovascular Health Study (CHS), Cohorte Lausannoise 
(COLAUS), Genetic Predisposition of Coronary Heart 
Disease in Patients Verified with Coronary Angiogram 
(controls for this study are a part of the National FINRISK 
Studies) (COROGENE), CROATIA-Korcula (CROATIA-
Korcula), CROATIA-Split (CROATIA-Split), CROATIA-
Vis (CROATIA-Vis), Estonian Genome Center (EGCUT), 
Estonian Genome Center (EGCUT2), European Prospec-
tive Investigation in Cancer and Nutrition (EPIC), Eras-
mus Rucphen Family (ERF), Fenland Study (Fenland), 
Framingham Heart Study (FHS), Predicting CVD in FIN-
RISK cohorts, cases (FINNRISK CASE), Predicting CVD 
in FINRISK cohorts, controls (FINRISK_ctrl), Finland-
United States Investigation of NIDDM Genetics Study 
(FUSION), Genetic Regulation of Ambulatory Blood 
Pressure in the Community (GRAPHIC), Health 2000 
controls (H2000), The Health Aging and Body Com-
position Study (Health ABC), HTO, Italian Network of 
Genetic Isolates - Val Borbera (INGI_VB), Genetic Park 
of Cilento and Vallo di Diano Project (Cilento study), Ital-
ian Network on Genetic Isolates - Friuli Venezia Giulia 
Genetic Park (INGI-FVG), Italian Network on Genetic 
Isolates - Carlantino Project (INIG-CARL), Charles R. 
Bronfman Institute for Personalized Medicine (IPM) 
BioBank Genome Wide Association Study of Cardio-
vascular, Renal and Metabolic Phenotypes (IPM), Koop-
erative Gesundheitsforschung in der Region Augsburg 

(KORAS3), Cooperative Health Research in the Region 
of Augsburg (Survey 4) (KORAS4), Lothian Birth Cohort 
1921 (LBC1921), Lothian Birth Cohort 1936 (LBC1921), 
London Life Sciences Prospective Population Study 
(LOLIPOP_EW610), Multi-Ethnic Study of Atheroscle-
rosis (MESA), MICROS (MICROS), Myocardial Infarc-
tion Genetics Consortium (MIGen), Netherlands Study 
of Depression and Anxiety (NESDA), The Northern 
Sweden Population Health Study (NSPHS), Netherlands 
Twin Register (NTR), Orkney Complex Disease Study 
(ORCADES), PHArmacogenetic Study of Statins in the 
Elderly at risk (PROSPER), Prospective Investigation of 
the Vasculature in Uppsala Seniors (PIVUS), Precocious 
Coronary Artery Disease (PROCARDIS), Rotterdam 
Study 1 (RSI), Rotterdam Study 2 (RSII), Rotterdam Study 
3 (RSIII), Study of Health in Pomerania (SHIP), Swedish 
Twin Register (STR), Tracking Adolescents’ Individual 
Live Surveys (TRAILS), Tracking Adolescents’ Individual 
Live Surveys - Clinical Cohort (TRAILS-CC), Uppsala 
Longitudinal Study of Adult Men (ULSAM), Women’s 
Genome Health Study (WGHS), The Young Finns Study 
(YFS), Anglo-Scandinavian Cardiac Outcomes Trial 
(Scandinavia) (ASCOT-SC), Anglo-Scandinavian Cardiac 
Outcomes Trial (UK/Ireland) (ASCOT-UK), The British 
Genetics of Hypertension Trial (BRIGHT), The Three 
City Study - Dijon (3  C-DIJON), European Prospective 
Investigation into Cancer and Nutrition - cardiovascu-
lar disease study (EPIC-CVD), The Fenland Study (Fen-
land (Fenland-GWAS)), The Fenland Study (Fenland 
(Fenland-OMICS)), European Prospective Investigation 
into Cancer - InterAct Study (EPIC-InterAct (EPIC-
InterAct-GWAS)), European Prospective Investigation 
into Cancer - Norfolk Cohort (EPIC-Norfolk), Genetic 
and phenotypic determinants of blood pressure and 
other cardiovascular risk factors (GAPP), Genetics of 
Diabetes and Audit Research Tayside Study (GoDARTS), 
Generation Scotland (GS:SFHS), Hunter Community 
Study (HCS), Justification for the Use of Statin in Pre-
vention: An Intervention Trial Evaluating Rosuvastatin 
(JUPITER), The Lifelines Cohort (Lifelines), Malmö Diet 
and Cancer study (MDC), Metabolic Syndrome in Men 
(METSIM), Netherlands Epidemiology of Obesity Study 
(NEO), Prevention of REnal and Vascular ENd-stage 
Disease (PREVEND), SardiNIA (SardiNIA), TwinsUK 
(TWINSUK), United Kingdom Household Longitudinal 
Study (UKHLS), collectively involving a substantial par-
ticipant pool of 299,024 individuals. All the participants 
in the ICBP GWAS are European, and the genotype were 
imputed using either the 1000 Genomes Project Phase 1 
integrated release v.3 (March 2012) all-ancestry reference 
panel or the Haplotype Reference Consortium (HRC) 
panel.
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Genetic instruments for blood metabolites
To identify genetic instruments for Mendelian ran-
domization (MR) analysis, SNPs associated with blood 
metabolites at the genome-wide significant threshold 
(p-value < 5 × 10− 8) were utilized as instrumental vari-
ables (IVs) in this study [8–10]. The selection procedure 
for these instruments is depicted in Fig.  1 and involved 
the following steps: (1) SNPs underwent LD clumping, 
considering a threshold of r2 < 0.001 within a 10,000  kb 
window. This process accounted for potential linkage 
disequilibrium between SNPs, which could otherwise 
lead to an overestimation of instrumental strength and 
overly precise effect estimates [11]. (2) Only SNPs with 
matching alleles between the exposure and outcome 
datasets were retained; (3) Strict criteria were applied to 
include only robust IVs, requiring an F-statistic ≥ 10; (4) 
The IVs selected for the exposure variable were ensured 
to have no direct association with the outcome, with a 
p-value > 5 × 10− 8.

MR analyses for likely causally associated metabolites for 
DBP and SBP risk
Two-sample MR was utilized to estimate the associations 
between genetically predicted metabolite levels and DBP 
and SBP risk, respectively, following the recommenda-
tions of the STROBE-MR statement [12]. In the current 
study, the genetic instruments for each metabolite of 
interest are determined from the CLSA study, by focus-
ing on SNPs associated with levels of each metabolite 
of interest at p-value < 5 × 10− 8. One key benefit of con-
ducting Mendelian randomization (MR) analysis is that 
it solely relies on GWAS summary statistics, eliminat-
ing the need for individual-level data. Two-sample Men-
delian randomization (MR) offers several advantages, 
including increased statistical power, mitigation of bias 
stemming from unmeasured confounders or reverse cau-
sality, and enhanced flexibility when selecting exposure 
and outcome variables [13].

After extracting the association estimates between the 
variants and the exposures or the outcome, the Wald 
Ratio (WR, when only one IV exists) or inverse vari-
ance weighting (IVW, when two or more IVs are avail-
able) method was used to conduct main MR analysis [8, 
14–16]. Heterogeneity among genetic instruments was 
assessed using Cochran’s Q test. The significance of the 
MR results was determined using Bonferroni correc-
tion of 0.05 (p-value = 7.05 × 10− 5 = 0.05/707 for DBP and 
7.11 × 10− 5 = 0.05/703 for SBP). All the MR analysis was 
performed using TwoSampleMR R package [17].

To validate the robustness of our results in the face of 
possible violations of the MR assumptions, we conducted 
two sensitivity analyses when two or more IVs were avail-
able: (1) We used MR-Egger’s intercept to estimate the 
possibility of horizontal pleiotropy [18]; (2) We employed 

the maximum likelihood method and the weighted 
median-based method to assess the significant of rela-
tionships between metabolites and hypertension traits.

Reverse MR analyses
We used the same parameters (p-value < 5 × 10− 8) to 
extract SNPs from DBP and SBP from GWAS summary 
statistics. Then, we selected independent SNPs (r2 < 0.001 
in the European panel using Two Sample MR software) 
used these as IVs in an MR analysis on all the 1,091 
metabolite traits. Similarity, Bonferroni correction of 
0.05 (p-value = 2.29 × 10− 5 = 0.05/(1091 + 1091)) was used 
as the threshold to identify significant association results.

Results
Levels of blood metabolites associate with DBP risk
According to the Method section, a total of 707 blood 
metabolites were selected based on the mentioned strat-
egy for further analysis. Causal relationships between 
these 707 blood metabolites and DBP were examined 
using the WR or IVW method. Following Bonferroni 
correction for multiple testing, a total of 12 blood metab-
olites were found to be significantly associated with DBP. 
Among these metabolites, 7 (N-alpha-acetylornithine, 
N-acetyl-2-aminoadipate, N-acetylarginine, N-acetyl-
glutamine, N6-acetyllysine, N-acetylcitrulline, and behe-
noyl dihydrosphingomyelin [d18:0/22:0]) demonstrated a 
positive effect on DBP, while 5 metabolites (2-hydroxyoc-
tanoate, N2,N2-dimethylguanosine, alliin, N-delta-acety-
lornithine, and 1-(1-enyl-stearoyl)-2-arachidonoyl-GPE 
(P-18:0/20:4)*) showed a negative effect on DBP (Fig. 2A 
and Table S2). The IVs employed for the MR analysis, 
specifically derived from the 12 metabolites that demon-
strated significant associations, can be found in Table S3.

In the sensitivity analysis, seven metabolites were 
assessed, namely 1-(1-enyl-stearoyl)-2-arachidonoyl-
GPE (P-18:0/20:4)*, 2-hydroxyoctanoate, behenoyl 
dihydrosphingomyelin (d18:0/22:0)*, N-acetylarginine, 
N-acetylcitrulline, N-acetylglutamine, and N-delta-
acetylornithine, which had two or more than two IVs. 
For behenoyl dihydrosphingomyelin (d18:0/22:0)*, 
both the Maximum Likelihood (p-value = 1.05 × 10− 8) 
and Weighted Median (p-value = 7.13 × 10− 7) methods 
revealed a significant association between the metabolite 
and SBP. The p-value from the Egger intercept analysis 
was 0.28, indicating no evidence of pleiotropy affecting 
the instrumental variables. Heterogeneity tests were 
conducted to assess potential heterogeneity among the 
instrumental variable estimates, and the results indi-
cated that there was no significant heterogeneity pres-
ent (p-value = 0.64). Similar findings were observed for 
the metabolites 1-(1-enyl-stearoyl)-2-arachidonoyl-GPE 
(P-18:0/20:4)*, 2-hydroxyoctanoate, N-acetylarginine, 
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N-acetylcitrulline, N-acetylglutamine, and N-delta-acety-
lornithine (Table S4).

Levels of blood metabolites associate with SBP risk
In the present study, a total of 703 blood metabolites 
were identified to possess instrumental IVs for MR analy-
sis. The WR or IVW method was utilized to investigate 
the causal relationships between these 703 blood metab-
olites and SBP. Upon applying the Bonferroni correc-
tion for multiple testing, a total of 22 blood metabolites 
were found to exhibit significant associations with SBP. 
Among these metabolites, 8 namely N1-Methyl-2-pyr-
idone-5-carboxamide, X-12847, X-12822, ferulic acid 
4-sulfate, X-12839, X-11381, N-formylmethionine,  and 
X-15486 displayed a positive effect on SBP. Conversely, 
14 metabolites including X-25420, imidazole propio-
nate, 5-hydroxy-2-methylpyridine sulfate, 3-hydroxy-
2-methylpyridine sulfate, gamma-glutamylthreonine, 
mannonate*, 1-methyl-4-imidazoleacetate, X-25419, 
3-carboxy-4-methyl-5-propyl-2-furanpropanoate 
(CMPF), X-24531, X-21364, N-succinyl-phenylalanine, 
hydroxy-CMPF*, and phenylacetylglutamate were found 
to exert a negative effect on SBP (Fig. 2B and Table S5). 
Detailed information on the IVs used for the MR analy-
sis derived from the 22 significant metabolites associated 
with blood pressure can be found in Table S6.

In the sensitivity analysis, only one metabolite 
(X-11381) with four instrumental variables IVs was 
further examined. The results demonstrated a signifi-
cant association between X-11381 and SBP using both 

the Maximum Likelihood (p-value = 2.46 × 10− 5) and 
Weighted Median (p-value = 5.17 × 10− 5) methods. Fur-
thermore, no significant heterogeneity (p-value = 0.67) 
or pleiotropy (p-value = 0.42) was detected among the 
instrumental variables used in the analysis. These find-
ings indicate that the association between X-11381 and 
SBP is consistent across the different IVs, and there is 
no evidence of substantial heterogeneity or pleiotropy 
affecting the results (Table S7).

Comparison of the associated metabolites between DBP 
and SBP
In the current study, we didn’t identify any metabolites 
significantly associated with DBP and SBP simultane-
ously. Out of the 12 metabolites significantly associated 
with DBP, only one metabolite, namely behenoyl dihy-
drosphingomyelin (d18:0/22:0)*, exhibited a positive 
association with SBP at a p-value below 0.05 (Table S2 
and Table S5).

Conversely, we further investigated whether the 22 
metabolites significantly associated with SBP demon-
strated potential associations with DBP. Among these 
metabolites, instrumental variables (IVs) were available 
for 19 metabolites, excluding 5-hydroxy-2-methylpyr-
idine sulfate, 3-hydroxy-2-methylpyridine sulfate, and 
N1-Methyl-2-pyridone-5-carboxamide. Interestingly, all 
the metabolites showed potential associations with DBP, 
displaying the same effect direction, and achieving statis-
tical significance at a p-value below 0.05 (Tables S2 and 
S5).

Fig. 2 Blood metabolites associations for hypertension. (A) Volcano plot demonstrating negative (blue) and positive (red) blood metabolites associations 
with DBP; points are colored where P < 0.05/707. (B) Volcano plot demonstrating negative (blue) and positive (red) blood metabolites associations with 
SBP; points are colored where P < 0.05/703
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Reverse MR analysis assessing the effect of BP on blood 
metabolites
To further evaluate the causal impact of blood pres-
sure (DBP and SBP) on blood metabolites, a reverse MR 
analysis was performed. The IVs were extracted from the 
GWAS summary for both DBP and SBP, as outlined in the 
Method section. The results revealed that DBP exhibited 
a significant association with only one metabolite, namely 
tricosanoyl sphingomyelin (d18:1/23:0)* (OR per SD 
increase: 0.98; 95% CI: 0.97–0.99; p-value = 1.73 × 10− 6) 
(Fig. 3 and Table S8). Similarly, SBP demonstrated a sig-
nificant association with only one metabolite, specifically 
2-hydroxyhippurate (salicylurate) (OR per SD increase: 
1.01; 95% CI: 1.01–1.02; p-value = 1.69 × 10− 5) (Fig. 3 and 
Table S9).

Discussion
In this study, a comprehensive two-sample MR approach 
was employed to examine the causal relationship 
between blood metabolite levels and blood pressure 
(DBP and SBP). A total of 12 metabolites were found to 
be significantly associated with DBP, while 22 metabolites 
showed a significant association with SBP. In reverse MR 
analysis, we identified DBP has negatively causal effect 
on tricosanoyl sphingomyelin (d18:1/23:0)* level and SBP 
has positive causal effect on 2-hydroxyhippurate (sali-
cylurate) level.

To enhance the rigor of our selection process for 
instrumental variables (IVs), we employed more strin-
gent criteria compared to a previous study [19]. However, 
for metabolites with multiple IVs (more than two), sev-
eral sensitivity analyses were performed to validate the 
robustness of our findings. Specifically, four metabolites 
(1-(1-enyl-stearoyl)-2-arachidonoyl-GPE (P-18:0/20:4)*, 
behenoyl dihydrosphingomyelin [d18:0/22:0]*, N-acetyl-
arginine, and N-acetylglutamine) were examined for their 
itssignificant association with DBP, and one metabolite 
(X-11,381) was investigated for its significant association 
with SBP. All sensitivity analyses consistently supported 
our main analysis results, as no significant pleiotropy or 
heterogeneity was observed in the study, indicating that 
the four metabolites under investigation are robustly 
associated with blood pressure. For the remaining results 
(8 metabolites on DBP, and 21 metabolites on SBP), we 
were unable to perform sensitivity analyses for these 
associations due to the limited number of available IVs. 
Therefore, further investigations with larger sample sizes 
are necessary to validate our findings.

In the previous Mendelian randomization (MR) 
analysis from Qiao et al. [19], three metabolites, 
namely N-acetylglycine (OR = 0.95, 95%CI: 0.92–0.97, 
FDR = 0.023), X-09026 (OR = 0.85, 95%CI: 0.78–0.92, 
FDR = 0.02), and X-14473 (OR = 0.94, 95%CI: 0.91–0.97, 
FDR = 0.04), were found to be significantly associated 

Fig. 3 Bidirectional Mendelian randomization analysis supports causal associations for blood metabolites on hypertension and vice versa. (A) Compari-
son of bidirectional two-sample MR -log10 (p-values) for the 707 metabolites that could be investigated in both directions, where the x-axis indicates the 
p-value for a causal effect of blood metabolites on DBP and the y-axis indicates the p-value for a causal effect of DBP on blood metabolites. (B) Compari-
son of bidirectional two-sample MR -log10 (p-values) for the 703 metabolites that could be investigated in both directions, where the x-axis indicates the 
p-value for a causal effect of blood metabolites on SBP and the y-axis indicates the p-value for a causal effect of SBP on blood metabolites. Significant 
metabolites as indicated in the legend, while the dashed lines indicate significant threshold after Bonferroni correction
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with DBP. However, no metabolites were identified as 
significantly associated with SBP. In the current study, 
we employed more stringent criteria in selecting IVs. 
We employed a threshold of 5 × 10− 8 for selecting sig-
nificant SNPs whereas the prior study utilized 1 × 10− 5. 
We performed LD clumping using the default param-
eter (r2 < 0.001 within a 10,000  kb window) using the 
TwoSampleMR software. In contrast, the previous study 
used a more relaxed threshold with r2 < 0.1 and a physi-
cal distance of 500  kb. Additionally, we excluded weak 
IVs with F-statistic < 10 and SNPs directly significantly 
associated with outcome (p-value < 5 × 10− 8). Thus, in 
our study, most metabolites remained only one IV for 
further analysis. Furthermore, we used the latest metab-
olites GWAS summary with a larger sample size (8,299 
verse 7,828) and a broader spectrum of metabolites 
(1,091 vs. 486), resulting in a more comprehensive and 
rigorous result. In our study, a causal effect analysis was 
performed between the metabolite N-acetylglycine and 
DBP. However, our results indicated that N-acetylglycine 
did not demonstrate a causal effect on DBP (OR = 1.13, 
95%CI: 0.84–1.52, p-value = 0.42). These findings sug-
gested that further investigations were necessary to 
validate the causal effect of N-acetylglycine on DBP. We 
cannot compare the other metabolites due to the lack of 
IVs in the current study. The glycine was reported geneti-
cally associated with lower CHD risk and found that 
this may be partly driven by blood pressure [20]. In our 
study, the glycine showed a negative causal effect on DBP 
(OR = 0.76, 95%CI: 0.63–0.92, p-value = 4.71 × 10− 3) and 
SBP (OR = 0.43, 95%CI: 0.24–0.78, p-value = 5.16 × 10− 3), 
which is consistent with our results.

Several limitations exist in our study. Firstly, despite 
utilizing a recent and comprehensive metabolite GWAS 
dataset, the sample size employed in our MR analysis 
was relatively small (N = 8,299). We used a more stringent 
threshold in selecting IVs, this approach significantly 
improved the selection of strong IVs, but it also resulted 
in a limited number of IVs explaining only a small portion 
of the variance. It is imperative to validate our current 
results using a larger sample size and additional GWAS 
summaries of metabolites. Secondly, our study primarily 
focused on individuals of European ancestry. This nar-
row focus limits the generalizability and understanding 
of the causal relationship between metabolites and blood 
pressure in other ancestral populations. Thirdly, we used 
the summary data, which means we cannot explore any 
potential nonlinear effects or whether there might be dif-
ferences in effect between different groups (such as male 
and female). To obtain a more comprehensive under-
standing, future investigations should include individuals 
from diverse ancestral backgrounds.

Conclusions
Our findings identified 12 metabolites and 22 metabo-
lites that had a causal effect on DBP and SBP respectively, 
providing important information for understanding the 
etiology and pathogenesis of hypertension.
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