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Abstract
Canine anterior cruciate ligament (ACL) rupture is a common complex disease. Prevalence of ACL rupture 
is breed dependent. In an epidemiological study, yellow coat color was associated with increased risk of 
ACL rupture in the Labrador Retriever. ACL rupture risk variants may be linked to coat color through genetic 
selection or through linkage with coat color genes. To investigate these associations, Labrador Retrievers were 
phenotyped as ACL rupture case or controls and for coat color and were single nucleotide polymorphism (SNP) 
genotyped. After filtering, ~ 697 K SNPs were analyzed using GEMMA and mvBIMBAM for multivariate association. 
Functional annotation clustering analysis with DAVID was performed on candidate genes. A large 8 Mb region on 
chromosome 5 that included ACSF3, as well as 32 additional SNPs, met genome-wide significance at P < 6.07E-7 
or Log10(BF) = 3.0 for GEMMA and mvBIMBAM, respectively. On chromosome 23, SNPs were located within or near 
PCCB and MSL2. On chromosome 30, a SNP was located within IGDCC3. SNPs associated with coat color were also 
located within ADAM9, FAM109B, SULT1C4, RTDR1, BCR, and RGS7. DZIP1L was associated with ACL rupture. Several 
significant SNPs on chromosomes 2, 3, 7, 24, and 26 were located within uncharacterized regions or long non-
coding RNA sequences. This study validates associations with the previous ACL rupture candidate genes ACSF3 
and DZIP1L and identifies novel candidate genes. These variants could act as targets for treatment or as factors in 
disease prediction modeling. The study highlighted the importance of regulatory SNPs in the disease, as several 
significant SNPs were located within non-coding regions.
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Introduction
The cruciate ligaments within the knee provide stabil-
ity and oppose rotational and translational forces. In 
humans, the anterior cruciate ligament (ACL) is prone 
to rupture mostly through non-contact injury, especially 
in young female athletes [1]. In dogs, the cranial cruci-
ate ligament is anatomically equivalent to the ACL and 
is also vulnerable to non-contact injury [2]. ACL rup-
ture is the most common cause for canine lameness [3]. 
The underlying disease mechanism for most cases is 
described as the progressive tearing of ligament fibers in 
the presence of stifle synovitis [4, 5]. A combination of 
genetic and environmental factors defines an individual’s 
risk of complex disease development. Established genetic 
risk factors include breed, joint conformation, and joint 
immune responses, while age, obesity, and other extrin-
sic factors also have roles in disease development [6–9]. 
Prevalence is breed dependent; ACL rupture is more 
common in large breed dogs, such as Newfoundlands, 
Rottweilers, and Labrador Retrievers [9]. Heritability 
estimates for canine ACL rupture range from 0.27 to 0.89 
[10–13]. High prevalence in a breed is a consequence of 
intense selection leading to a concentration of risk loci 
[14]. Linkage disequilibrium (LD) is extensive in dogs, 
which enhances the statistical power of genome-wide 
association studies (GWAS) using single nucleotide poly-
morphism (SNP) markers as an approach for variant dis-
covery [15]. ACL rupture in the Labrador Retriever is a 
polygenic complex disease whereby many loci with small 
and moderate effects influence disease risk [12, 16]. Sev-
eral candidate genetic variants have been identified [12, 
17–19], but given its polygenic nature, it is likely that 
additional variants remain to be discovered.

Labrador Retrievers have three AKC recognized coat 
colors: black, chocolate, and yellow. Risk of ACL rupture 
is increased in yellow Labrador Retrievers compared to 
black and chocolate dogs [20]. Inheritance of coat color 
is controlled by two genes: MC1R and TYRP1. Yellow 
coat color is inherited in an autosomal recessive man-
ner and is caused by a loss of function mutation in MC1R 
[21, 22]. In dogs that are homozygous for MC1R muta-
tions, pheomelanin is produced, creating a yellow coat 
color, while dogs with at least one wildtype MC1R allele 
produce eumelanin resulting in a black or chocolate phe-
notype. In these dogs, color is determined by the TYRP1 
gene. Chocolate color is autosomal recessive to black and 
is seen with any of three TYRP1 mutations [23]. Through 
LD, selection for coat color may have inadvertently 
selected risk variants for other phenotypes. For exam-
ple, research suggests that chocolate Labrador Retriev-
ers have shorter lifespans and are affected with skin and 
ear disease at higher rates than black or yellow Labrador 
Retrievers [24]. Behavioral differences have been associ-
ated with coat color as well [25]. Alternatively, genes that 

regulate coat color may have additional unknown direct 
biologic effects on ACL rupture risk. Studies have shown 
that MC1R has an important role in regulating inflamma-
tory pathways [26–28], and variants associate with osteo-
arthritis [29].

High LD and diversity within and between dog breeds 
enhance use of GWAS as an approach for causal vari-
ant discovery. Joint analysis of multiple phenotypes is a 
valuable technique that can increase statistical power to 
detect small and moderate associations expected with 
complex traits, such as ACL rupture [18, 30], and detect 
associations with ACL rupture, coat color, or both phe-
notypes in this study. Such knowledge will advance anal-
ysis of candidate variants that could improve genomic 
prediction of disease and further mechanistic study of 
influential biological pathways.

Materials and methods
Research approach
A within-breed GWAS in the Labrador Retriever was 
performed by analyzing SNPs from case and control 
dogs. All procedures were performed in accordance with 
the recommendations in the Guide for the Care and 
Use of Laboratory Animals of the National Institutes of 
Health and the American Veterinary Medical Associa-
tion and with approval from the Animal Care Commit-
tee of the University of Wisconsin-Madison (protocols 
V1070, V5463). Informed consent of each owner was 
obtained before participation in the study. Phenotypes 
included ACL rupture case/control status and coat color. 
Contact with the owners of control dogs was maintained 
to ensure accurate phenotyping and coding was updated 
if a dog became affected. Preparation of the manuscript 
conformed with the ARRIVE guidelines.

Inclusion and exclusion criteria for phenotyping
Most Labrador Retrievers exhibit signs of ACL rupture 
by 8 years old [31]. Lameness, knee instability, and liga-
ment damage are usually confirmed during surgical treat-
ment. Dogs were excluded as a case if contact injury was 
diagnosed from the clinical history. Phenotype negative 
controls were dogs ≥ 8 years old with normal orthopaedic 
exams and normal knee radiographs.

Clinical examination of each dog was performed, 
including knee palpation for instability. Bilateral weight-
bearing radiographs were reviewed and graded for stifle 
effusion and osteophytosis [32]. Dog age, sex, weight, 
neuter status, and coat color were also recorded [18].

DNA isolation, SNP genotyping, and quality control
DNA was isolated from buffy coat leukocytes from EDTA 
blood or cheek swab saliva. DNA was isolated using stan-
dard reagents (Blood – Puregene Cell Core Kit, Qiagen, 
Germantown, MD; saliva – DNA Genotek prepIT-L2P, 
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Ottawa, ON, Canada). Genotyping was performed using 
the Illumina Canine HD BeadChip which has ~ 220,000 
SNPs mapped to CanFam3.1. SNPs were then imputed to 
the Thermofisher Axiom HD Canine 770  K array using 
Beagle 5.0 [19, 33] and a multi-breed reference panel that 
consisted of 646 purebred dogs of various breeds that 
were genotyped using the Axiom Canine HD 770 K array, 
including 96 Labrador Retrievers. Before imputation 
of the ACL rupture SNP data, we validated our method 
using a group of 22 Labrador Retrievers with whole 
genome sequence (WGS) data. Illumina SNPs were 
extracted from WGS data and imputed to denser set of 
Axiom SNPs using Beagle 5.0 with the reference panel, 
a window size of 3 cM with 1 cM overlap, and effective 
population size of 100. Imputation accuracy was 96%. 
Using PLINK1.9 [34], SNPs with a minor allele frequency 
(MAF) < 0.005 (to analyze potential rare variants) and a 
call rate < 95%, and dogs with a call rate of < 95% were 
removed. SNPs with deviations from Hardy-Weinberg 
proportions at P < 1E-7 were also filtered out.

Multivariate GWAS
ACL rupture case-control and coat color phenotypes 
were used for multivariate association using the linear 
mixed model approach implemented in GEMMA [35]. 
P-values are calculated to measure support for each 
model compared to the null (no association). The value 
for genome-wide significance was calculated using a 
Bonferroni correction for the number of haplotype 
blocks in the genome using PLINK [34] and was deter-
mined to be P < 6.07E-7. Additionally, a Bayesian statis-
tical model was used with mvBIMBAM [36] to identify 
associations between genotypes and phenotypes (directly 
associated, indirectly associated, or unassociated with 
one or both phenotypes). Bayes Factors were evaluated 
for evidence of association with the multivariate pheno-
type. SNPs with a Log10 Bayes Factor > 3 were considered 
to have moderate evidence of association, and SNPs with 
a Log10 Bayes Factor > 6 were considered to have strong 
evidence of association. Marginal posterior probabilities 
of associated SNPs were evaluated to determine which 
phenotypes may be influencing the association. Sex, age, 
neuter status, and weight were included as covariates in 
both models. For mvBIMBAM, case-control phenotypes 
were residuals of multiple logistic regression against the 
covariates.

Regions with evidence of association with either 
GEMMA or mvBIMBAM analysis were evaluated using 
the CanFam3.1 Broad Improved Canine Annotation cat-
alog in the UCSC Table Browser to identify associated 
genes. LocusZoom [37] and triangle heat map plotting 
with the ‘gpart’ R package and the Big-LD algorithm [38, 
39] were also used to investigate haplotype structure and 
candidate genes in selected regions.

Functional annotation clustering
A list of genes that were within a ±25 kb flanking region 
of each significant SNP was created using the canFam3.1 
Broad Improved Canine Annotation catalog in the UCSC 
Table Browser. Functional annotation clustering was then 
performed using DAVID [40, 41]. Functional clusters 
with significant P-values were evaluated for biological 
relevance to the ACL rupture and coat color phenotypes.

Results
Phenotype data were collected from 367 dogs. After qual-
ity control, the final dataset included 696,846 SNPs from 
148 cases and 219 controls. There were 41 cases and 96 
controls with a black coat color, 33 cases and 51 controls 
with a chocolate coat color, and 73 cases and 73 con-
trols with a yellow coat color. Black dogs had a decreased 
risk of ACL rupture (odds ratio = 0.50, P = 0.0024), while 
yellow dogs had an increased risk (odds ratio = 1.99, 
P = 0.0017). Chocolate color did not influence ACL rup-
ture risk (Table 1).

The multivariate GWAS using GEMMA provided evi-
dence of association (P < 6.02E-7) for 337 SNPs (Figs.  1 
and 2; Table  2, Supplementary File S1). Of these, 331 
were located on chromosome 5, including the most sig-
nificant SNP (P = 3.95E-45), located within the TCF25 
gene, which is a transcription factor that is important in 
embryonic development. Significant SNPs on chromo-
some 5 spanned a large region of > 8  Mb that included 
more than 100 genes. The 6 other significant SNPs were 
located on chromosomes 7, 23, 24, and 30. SNPs were 
within or near non-coding or uncharacterized regions 
on chromosome 7 and 24 (Table  2). On chromosome 
23, the association was near the PCCB and MSL2 genes. 
On chromosome 30, the association was within the 
IGDCC3 gene. To better discern nearby genes and hap-
lotype structure in the large region chromosome 5, a 
LocusZoom plot was built around the most significant 
SNP (P = 3.95E-45) at chr5:63697949 (Fig. 3). There were 
many SNPs in LD within the ANKRD11 gene. There were 
also SNPs in LD within MC1R, PIK3CD, DPEP1, SPG7, 
ACSF3, and CBFA2T3 (Fig.  3). Additionally, a triangle 
plot was built spanning a ~ 3  Mb region (62.3-65.3  Mb) 
which revealed several areas of LD, including a haplotype 
block that contained TCF25 and MC1R.

Table 1  Distribution of coat colors among ACL rupture case and 
control Labrador Retrievers
Coat Color Cases Controls Odds 

Ratio
P-
value

Black 41 (29.9%) 96 (70.1%) 0.50 < 0.005

Chocolate 33 (39.3%) 51 (60.7%) 0.96 0.87

Yellow 73 (50.0%) 73 (50.0%) 1.99 < 0.005
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The multivariate analysis using mvBIMBAM revealed 
a total of 589 SNPs directly associated with either coat 
color, ACL rupture, or both (Fig.  1, Supplementary File 
S2). 237 of these SNPs displayed strong evidence of asso-
ciation (Log10 BF≥6.0). Of the associated SNPs, 556 were 
on chromosome 5, and were within or near 56 genes. 
The SNP with the highest significance (Log10 BF = 31.30) 
was located on chromosome 5 at the same position as 
the most significant SNP revealed in GEMMA analysis 
(Table 3) and was associated with coat color. There were 
nine additional loci associated with coat color found on 
chromosomes 2, 3, 7, 10, 16, and 26 (Table 3). The asso-
ciations on chromosomes 2 and 3 were within noncoding 
regions. On chromosome 7, an association was identified 
within RGS7. Chromosome 10 associations were within 
FAM109B and SULT1C4. Three SNPs were associated 
ADAM9 on chromosome 16. On chromosome 26, there 
were associations within lncRNA sequences, and the 
RTDR1 and BCR genes. We identified one DZIP1L SNP 
on chromosome 23 that was associated with ACL rup-
ture. Additionally, there was one SNP on chromosome 24 
that was associated with both color and ACL rupture that 
was within a noncoding region. Functional annotation 
clustering with DAVID did not identify significant path-
way enrichment.

Discussion
Multivariate GWAS improves power to detect loci with 
weaker associations with disease risk. Multivariate analy-
sis of ACL rupture case and control Labrador Retrievers 
of differing coat color revealed associations with sev-
eral ACL rupture candidate genes after GEMMA and 
mvBIMBAM analysis, consistent with a polygenic dis-
ease. This study validated ACSF3 and DZIP1L [19] as 
candidate genes, discovered other novel candidate loci, 
and revealed association with many genes in a chromo-
some 5 locus.

Considering coat color as a potential risk factor in 
the development of ACL rupture is a novel approach. 
Although the exact mechanisms remain unknown, coat 
color has been found to influence the risk of other disease 
processes and behavior patterns in the dog [24, 25, 42]. 
Since ACL rupture is a complex disease, it is possible that 
coat color genes may have small effects on disease risk, or 
that other genes that influence risk are inherited together 
with coat color genes through LD.

The region of the genome that displayed the strongest 
association was on chromosome 5. There were numer-
ous SNPs that met genome wide significance in both 
GEMMA and mvBIMBAM analysis. This locus contained 
many associated genes with proximity to the MC1R 
gene. In both multivariate analyses, the most significant 
SNP was within the TCF25 gene. This gene encodes a 

Fig. 1  Manhattan plot of mvBIMBAM and GEMMA results for the multivariate phenotype of anterior cruciate ligament rupture and coat color. (A) Data 
for the mvBIMBAM analysis is shown as log10Bayes factors (BF) and (B) GEMMA data are displayed as log10P with the associated QQ plot of expected 
and observed P-values for GEMMA analysis to assess population stratification. SNPs on chromosome 5 displayed the most significant associations with 
the multivariate phenotype. There were also SNPs on chromosomes 2, 3, 7, 10, 16, 23, 24, 26, and 30 that showed significant association. Genome-wide 
significance cut-off is shown at Log10(BF) = 3.0 and -Log10(P) = 6.22. Lamda = 2.033
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transcription factor that acts as a transcriptional repres-
sor and is important during embryonic development. It 
is not currently known to have effects on ACL rupture 
or coat color, or to directly influence biological pathways 
that precede disease development. Interestingly, earlier 
research [43] and our analysis suggests that TCF25 is in 

LD with MC1R. Mutations in MC1R control yellow ver-
sus chocolate or black coat color in Labrador Retriev-
ers [21, 22]. MC1R is also known to be expressed within 
articular cartilage [44], and melanocortins promote anti-
inflammatory states within joints [26, 28]. Nonfunctional 
MC1 receptors have been linked to the development 

Table 2  SNPs associated with the multivariate phenotype of ACL rupture and coat color in the Labrador Retriever using linear mixed 
model GWAS with GEMMA [35]
Chr Position Num-

ber of 
SNPs

P-value Gene Location Dis-
tance 
(bp)

5 63,697,949 1 3.95E-45 TCF25 63,697,627–63,729,780 0

5 64,046,368–
64,095,007

9 5.48E-
26–1.64E-25

ANKRD11 64,047,188–64,229,582 0

7 49,455,960 1 5.97E-07 lncRNA 49,407,711–49,493,131 0

23 32,670,460 1 3.19E-07 PCCB 32,689,873–32,782,007 19,413

MSL2 32,631,936–32,662,611 7849

24 34,877,398 1 3.14E-07 non-coding n/a n/a

24 34,983,528 1 3.62E-07 non-coding n/a n/a

24 38,868,995 1 1.83E-07 non-coding n/a n/a

30 29,741,631 1 2.25E-08 IGDCC3 29,702,195–29,743,079 0
Note: There was a large area spanning approximately 8 Mb on chromosome 5 that contains 331 SNPs, including the one with the most significant association. Only 
the top 10 SNPs on chromosome 5 are presented in the table. Genes within ±25 kb of each SNP are reported

Fig. 2  LocusZoom plot of the chromosome 5 candidate region illustrating linkage disequilibrium around MC1R. An ~ 3 Mb region centered around the 
most significant SNP is highlighted in this plot. SNPs with the highest LD were within the ANKRD11, SPG7, CBFA2T3, ACSF3, and TMEM201 genes
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of osteoarthritis in mice [29]. Knee osteoarthritis is an 
inflammatory process that is also associated with ACL 
rupture in dogs [4]. LD between TCF25 and MC1R may 
indicate that the effect of this locus is mediated by MC1R. 
Defective MC1 receptors may promote an inflamma-
tory state within the knee that leads to cruciate ligament 
fiber rupture. It should be noted that no genome-wide 
associations were found within the TYRP1 gene, which 
also controls coat color in Labrador Retrievers, so it is 
unlikely that the association near MC1R is an unintended 
consequence of including coat color as an additional 
phenotype.

There were many other significant SNP associations 
within the haplotype block on chromosome 5 that were 
located within or near other candidate ACL rupture 
genes. Interestingly, one of these genes, ACSF3, has been 
previously associated with ACL rupture [19]. ACSF3 is 
differentially expressed in ligament [19] and may influ-
ence risk of rheumatoid arthritis [45]. ANKRD11 is 
another interesting gene in LD with the most significant 
SNP. This gene regulates cell proliferation and apoptosis. 
Maladaptive responses to injury in joints could lead to 
increased inflammation or structural changes that com-
promise joint homeostasis. Other genes in LD in this 

locus, including DPEP1, LZIC, SLC7A5, PIK3CD, RPL13, 
and TNFRSF25, have been associated with OA or are 
involved with processes that could link them to ACL rup-
ture pathogenesis [46–54]. PIK3CD and TNFRSF25 regu-
late lymphocyte development, which could play a role in 
ACL rupture since lymphoplasmacytic inflammation is 
seen within affected knees [55–57]. CLSTN1 is associ-
ated with weight and obesity, which are risk factors for 
ACL rupture development [58].

In both analyses, significant SNPs were located within 
multiple non-coding regions or lncRNA sequences. 
These sequences are thought to have regulatory effects 
on transcription, translation, or post-translational por-
tions of protein production [59, 60]. Effects of regula-
tory SNPs in the risk of complex canine diseases are not 
understood. In complex diseases such as ACL rupture, 
many small-effect SNPs combine to influence disease 
risk. It is plausible that regulatory mechanisms play a role 
in gene expression and ultimately influence disease risk. 
Gene regulation effects on protein production and cell 
signaling have been implicated in changes to the extra-
cellular matrix, ligament, and cartilage homeostasis, as 
well as ACL rupture pathophysiology [61]. Other than 
those on chromosome 5 and the associations within the 

Fig. 3  Triangle plot displaying haplotype blocks and linkage disequilibrium (LD) in the chromosome 5 candidate region. Regions with strong LD denoted 
by red coloring have the strongest associations and lighter colors have weaker LD. Haplotype blocks are outlined by triangular blocks. The MCIR and TCF25 
genes reside in the same haplotype block from chr5:63,694,334–63,728,735
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uncharacterized or non-coding regions, GEMMA analy-
sis identified several additional ACL rupture candidate 
genes. On chromosome 23, there was a significant SNP 
located near the MSL2 gene. MSL2 is responsible for his-
tone acetylation and gene activation, as well as cellular 
responses to damage, such as apoptosis [62], and could 
modulate inflammatory responses leading to ligament 
fiber rupture [4, 5].

Due to the different statistical approaches of GEMMA 
and mvBIMBAM programs, it is not surprising that 
unique SNPs were discovered in each analysis. mvBIM-
BAM revealed significant associations with 26 SNPs that 
were not identified by GEMMA, most being associated 
with coat color. A chromosome 10 locus included the 
genes FAM109B and SULT1C4. FAM109B plays a role in 
endocytic trafficking [63]. It is expressed in many tissues 
including skin melanocytes and keratinocytes [64], which 
could explain association with coat color. RGS7 on chro-
mosome 7, SULT1C4 on chromosome 10, ADAM9 on 
chromosome 16, and RTDR1 and BCR on chromosome 
26 have no known association with coat color.

DZIP1L on chromosome 23 was associated with ACL 
rupture only, which validates earlier work [19]. DZIP1L 
encodes a protein found in the transition zone of cilia, 
and mutations have been associated with autosomal 
recessive polycystic kidney disease, as well as craniofacial 

deformities and polydactyly [65]. Cilia are found in chon-
drocytes, fibroblasts, and other connective tissue cells. 
Primary cilia of connective tissues are within the extra-
cellular matrix and transduce chemical stimuli, mechani-
cal stimuli, or respond to growth factors to control 
homeostasis, fibroblast migration, and cell cycling [66]. 
DZIP1L mutations resulting in ciliary dysfunction could 
influence ligament mechanotransduction and cause dys-
function in fibroblast homeostasis.

Through the inclusion of coat color as an additional 
phenotype, several genes were surprisingly associ-
ated with Labrador Retriever coat color. There are two 
genes that are known to control coat color in Labrador 
Retrievers [21, 23] as well as many other genes that play 
a role in coloring patterns, fur length, hair structure, and 
other related characteristics in dogs [41, 67–69]. Besides 
these, there have been numerous other loci with effects 
on coat color in other animal models [70] that have not 
been studied extensively in dogs. Therefore, it is plausi-
ble that some of the coat color gene associations in the 
current study may influence pathways that determine 
phenotypic appearance of dogs in ways that are not cur-
rently understood. Future research is warranted in this 
area to determine effects on skin, hair follicles, strands, 
or related structures that may explain the associations 
found in this study. There were many unique additional 

Table 3  SNPs associated with the multivariate phenotype of ACL rupture and coat color in the Labrador Retriever using Bayesian 
GWAS with mvBIMBAM [36]
Chr Position Num-

ber of 
SNPs

BF(mult) BF(ACLR) BF(color) PPE(ACLR) PPE(color) Interpre-
tation of 
association

Gene

2 71,101,534–71,129,159 4 3.39–3.76 -0.25-(-0.19) 3.61–4.04 0.41 1.00 color Non-coding

3 6,904,814 1 3.12 -0.22 3.51 0.49 1.00 color Non-coding

5 63,697,949 1 31.05 -0.32 31.30 0.34 1.00 color TCF25

5 64,529,952 1 22.09 -0.17 22.55 0.51 1.00 color TRAPPC2L

5 65,740,974 1 21.88 -0.24 22.30 0.46 1.00 color Non-coding

5 62,868,802 1 20.84 -0.14 20.43 0.29 1.00 color SLC25A33

5 65,726,354 1 20.24 -0.23 20.67 0.47 1.00 color FBXO31

5 64,048,349 2 17.07–
17.34

-0.29 17.33–17.59 0.35 1.00 color ANKRD11

5 63,957,203 1 14.39 -0.08 14.86 0.56 1.00 color CPNE7

5 63,097,333 1 12.20 -0.29 12.56 0.41 1.00 color CTNNBIP1

5 63,988,836 1 11.13 -0.20 11.55 0.49 1.00 color SPG7

7 32,703,446 1 4.52 -0.04 4.89 0.57 1.00 color RGS7

10 23,299,673 1 3.04 -0.12 3.26 0.46 1.00 color FAM109B

10 35,494,733 1 3.03 -0.03 3.10 0.51 1.00 color SULT1C4

16 26,472,996–26,477,692 3 3.27–3.91 -0.25-(-0.14) 3.43–4.17 0.40–0.43 1.00 color ADAM9

23 34,304,346–34,308,607 3 3.08–3.11 3.42–3.46 -0.23-(-0.22) 1.00 0.45 ACLR DZIP1L
24 40,095,242 1 3.03 0.81 2.10 0.91 1.00 color and 

ACLR
Non-coding

26 27,293,677–27,476,357 7 3.14–4.36 -0.25-(-0.04) 3.46–4.61 0.40–0.58 1.00 color Non-coding

26 27,898,308–27,910,578 3 3.09–3.20 -0.26-(-0.25) 3.43–3.55 0.42–0.44 1.00 color BCR

26 27,762,329 1 3.02 -0.22 3.26 0.42 1.00 color RTDR1
Note: SNPs with significant associations were found on chromosomes 2, 3, 5, 7, 10, 16, 23, 24, and 26. There were 556 significant SNPs on chromosome 5, the top 10 
are listed in this table. ACLR, anterior cruciate ligament rupture. Genes within ±25 kb of each SNP are reported
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observations in this study. Differences in SNP discovery 
across studies are likely due to a difference in selection 
of subject breeds, study design, and analytical approaches 
[12, 17–19, 71].

In conclusion, GWAS using multivariate linear mixed 
model and Bayesian model approaches has identified sev-
eral novel variants associated with ACL rupture and coat 
color in the Labrador Retriever. The study has also iden-
tified two variants, ACSF3 and DZIP1L, that were vali-
dated from previous studies [19], suggesting that these 
genes merit additional investigation. Associated genes in 
this study have effects on bone and cartilage pathology, 
inflammatory pathways, metabolism, development, and 
gene expression and regulation, supporting the complex-
ity of ACL rupture [12]. Although coat color has been 
linked to many other disease states, this is the first study 
to examine the relationship between coat color and ACL 
rupture in the Labrador Retriever. Canine ACL rupture is 
an important model for human ACL rupture [2], which 
is also a heritable disease [72] that leads to fatigue injury 
of ACL fibers and eventual non-contact rupture [2, 73]. 
Results from this study have translational value for the 
development of treatment and prevention strategies in 
both species, particularly polygenic risk score prediction 
of disease risk in both species.
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