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Abstract 

Objectives “Candidatus Liberibacter asiaticus” (CLas) is an un-culturable α-proteobacterium that caused citrus 
Huanglongbing (HLB), a destructive disease threatening citrus production worldwide. In China, the presence of HLB 
was first reported in Chaoshan region of Guangdong province, China around a century ago. Thus, whole genome 
information of CLas strains from Chaoshan area become the most important resource to understand the population 
diversity and evaluation of CLas in China.

Data description CLas strain GDCZ was originally from Chaozhou city (Chaoshan area) and sequenced using 
PacBio Sequel long-read sequencing and Illumina short-read sequencing. The genome of strain GDCZ comprised 
of 1,230,507 bp with an average G + C content of 36.4%, along with a circular CLasMV1 phage: CLasMV1_GDCZ 
(8,869 bp). The CLas strain GDCZ contained a Type 2 prophage (37,452 bp) and encoded a total of 1,057 open read-
ing frames and 53 RNA genes. The whole genome sequence of CLas strain GDCZ from the historical HLB endemic 
region in China will serve as a useful resource for further analyses of CLas evolution and HLB epidemiology in China 
and world.
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Objective
“Candidatus Liberibacter asiaticus” (CLas) is a fastidious 
phloem-limited Gram-negative bacterial pathogen caus-
ing citrus Huanglongbing (HLB, yellow shoot disease), 
the most destructive disease that threatening citrus pro-
duction worldwide. Nearly all commercial cultivars were 
susceptible to HLB [1]. HLB was first observed in Cha-
oshan area, east of Guangdong Province, China, in late 
1890s [2, 3]. Severe outbreaks of HLB were reported in 
the citrus growing area of Guangdong Province around 
1940s [4]. Based on HLB spreading timeline, it is gener-
ally believed that from Chaozhou region, HLB spread to 
Pearl River Delta area in central Guangdong through the 
movement of infected nursery stocks [2]. Now, HLB is 
found in 11 provinces in southern China, causing signifi-
cant economic loss in Chinese citrus production. CLas 
strains from Chaoshan area become the most important 
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resource to understand the evaluation and population 
diversity of CLas in China. Therefore, genomic informa-
tion of CLas strain from Chaoshan area are needed.

CLas is by far not culturable in vitro. Studies on CLas 
genome are mainly limited to analyses in planta or in 
Asian citrus psyllid (ACP, Diaphorina citri). Popula-
tion diversity of CLas provided baseline information for 
research and HLB management in China and the world. 
Thanks for the advancement of next generation sequenc-
ing (NGS) technologies, CLas genome sequences can 
now be acquired from ACP [5] and infected plants [6]. 
A comprehensive collection of CLas genome sequences 
from different geographical and ecological locations is 
fundamental for CLas population analysis. There are 
currently 45 CLas genome sequences deposit in NCBI 
Genome database. All the CLas genome sequences, 
except strain JRPAMB1, was short-reads sequencing-
based. The genome of strain JRPAMB1 originally from 
Florida was assembled from PacBio long-read sequenc-
ing. Both short-reads and long-reads sequencing formats 
have advantages and disadvantages. The research was set 
to take advantages of both sequencing formats to obtain 
a high-quality bacterial genome.

Data description
CLas strain GDCZ was originally collected from a 
HLB-affected fruit of Citrus reticulata cv. Tankan 
showing HLB symptoms (small asymmetrical fruit 
with uneven coloring of fruit) in a citrus orchard 
(23°40″22″N, 116°38″33″E, 25 m) located in Chaozhou 
City (Chaoshan area), Guangdong Province, China. DNA 
was extracted from fruit piths because of the high con-
centration of CLas [7]. Total DNA was extracted from 
fruit piths using an E.Z.N.A. High-Performance Plant 
DNA Extraction Kit (Omega Bio-Tek Co., China). The 

presence of CLas was confirmed by a real-time quantita-
tive PCR with primer set CLas4G / HLBr [8] with cycle 
threshold (Ct) value = 21.73. Phage typing PCR with 
phage specific primer sets [9, 10] showed that CLas strain 
GDCZ contained a Type 2 phage and a CLasMV1 phage.

Genome sequencing was performed by a PacBio Sequel 
system with 20-kb library insert size (Pacific Biosciences, 
Menlo Park, CA, U.S.A.) and an Illumina Hiseq Xten 
platform with 150-bp paired-end output (Illumina Inc., 
San Diego, CA, U.S.A.) through a commercial source. 
In total, 2,328,216 clean long-reads with a length range 
from 5,374 to 111,541  bp (N50 length = 6,426  bp) and 
95,698,604 clean short-reads (150-bp) were generated 
from the GDCZ sample (Table 1, Data file 1) [11].

All reads mapped to Citrus maxima genome 
(MKYQ00000001.1), C. reticulata genome 
(NIHA00000000.1), C. sinensis genome (AJPS00000000.1), 
C. sinensis mitochondrion (NC_037463.1) and C. reticu-
lata chloroplast (KU170678.1) were removed using Bow-
tie2 v2.4.1 (for short-reads) and BWA v0.7 (for long-reads) 
with default settings [15, 16]. A total of 152,762 (6.56%) 
unmapped long-reads and 15,179,368 (15.86%) unmapped 
short-reads were retained for assembly (Data file 1) [11]. 
The de novo assembly was performed by Canu v2.1.1 
(for long-reads) (genomeSize = 1.2  M, corrected Error-
Rate = 0.40) and CLC Genomic Workbench v20.0 (for 
short-reads) (minimum contig length = 500  bp) [17]. A 
total of 65 contigs (N50 = 13,580 bp) were generated from 
the long-reads and 39,316 contigs (N50 = 857 bp) from the 
short-reads (Data file 1) [11]. Contig blast against strain 
A4 genome (CP010804.2) by BLAST + v2.12.0 [18] identi-
fied a total of 85 CLas contigs (62 from long-reads and 23 
from short-reads), generating a GDCZ scaffold sequence. 
This scaffold had three segments apart by two inverted 
222-bp repeat gaps (Data file 1) [11]. The two 222-bp gaps 

Table 1 Overview of data files/data sets

Label Name of data file/data set File types (file extension) Data repository and identifier (DOI or 
accession number)

Data file 1 A workflow of genome assembly for CLas strain 
GDCZ

Spreadsheet Format file (.xlsx) Figshare (https:// doi. org/ 10. 6084/ m9. figsh are. 
23614 437. v2) [11]

Data file 2 Prophage detection of CLas strain GDCZ Spreadsheet Format file (.xlsx) Figshare (https:// doi. org/ 10. 6084/ m9. figsh are. 
23614 437. v2) [11]

Data file 3 ANI values for CLas strain GDCZ Spreadsheet Format file (.xlsx) Figshare (https:// doi. org/ 10. 6084/ m9. figsh are. 
23614 437. v2) [11]

Data file 4 Cluster analyses Portable Document Format file (.pdf ) Figshare (https:// doi. org/ 10. 6084/ m9. figsh are. 
23614 437. v2) [11]

Data set 1 Sequencing long-reads of CLas strain GDCZ Fasta file (.fa) NCBI SRA (https:// ident ifiers. org/ ncbi/ insdc. sra: 
SRR23 622213) [12]

Data set 2 Sequencing short-reads of CLas strain GDCZ Fasta file (.fa) NCBI SRA (https:// ident ifiers. org/ ncbi/ insdc. sra: 
SRR23 622214) [13]

Data set 3 Genome assembly of CLas strain GDCZ Genbank file (.gb) NCBI GenBank (https:// ident ifiers. org/ ncbi/ insdc: 
CP118 922) [14]
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can be satisfactorily filled by reads mapping with Illumina 
short-reads. The final sequence was polished by short-reads 
mapping (Length fraction = 0.95, Similarity fraction = 0.95). 
These efforts generated the GDCZ whole-genome sequence 
with a total of 1,230,507  bp (with average G + C content 
of 36.4%). Coverage levels analysis of reads mapping to 
three types of known prophage genomes (Type 1: SC1, 
HQ377372.1; Type 2: SC2, HQ377373.1; Type 3: P-JXGC-3, 
KY661963.1) showed that CLas strain GDCZ only har-
bored a Type 2 prophage (93.38%, from position 1,193,056 
to 1,230,507  bp) (Data file 2) [11]. In addition, a circular 
contig generated from long-reads (8,869 bp) by Canu v2.1.1 
was identical as the CLasMV1 phage genome (CP045566.1). 
Genome annotation revealed that CLas strain GDCZ con-
tained 1,057 open reading frames and 53 RNA genes.

The average nucleotide identity (ANI) was further ana-
lyzed between the strain GDCZ genome and 10 CLas 
genomes originally from China using FastANI v1.33 
(Fragment length = 1,000 bp) [19] (Data file 3) [11]. Three 
distinct branches were generated based on ANI matrix 
(Data file 4) [11]. Particularly, strain GDCZ was clus-
tered with two strains from Guangdong province (strain 
A4 and PGD) but far apart from CLas strains from others 
provinces (Jiangxi province: strain JXGZ and JXGC, Yun-
nan province: strain YNJS and PYN; Guangxi province: 
strain gxpsy).

Please see Table 1 for links to Data files 1–4 and Data 
sets 1–3.

Limitations
Due to the current inability to culture in vitro, the high 
ratio of citrus DNA as compared to CLas DNA in total 
DNA made the CLas genome sequencing more chal-
lenging. Therefore, the strategy of genome sequencing of 
CLas required a higher sequencing depth to obtain more 
CLas reads for improving the quality of CLas genome 
assembly. In this study, genome assembly of PacBio long-
reads sequencing of CLas DNA samples extracted from 
plant host sources was insufficient to obtain a complete 
CLas genome, which suggested that the sequencing 
depth of one PacBio long-reads sequencing run could not 
enough to cover the whole CLas genome. Thus, an addi-
tion Illumina Hiseq Sequencing for CLas GDCZ sam-
ples was performed and added with PacBio long-reads to 
obtain the complete high-quality CLas GDCZ genome. 
Further research on CLas DNA enrichment, e.g. remov-
ing of citrus host DNA or enriching bacterial cells before 
DNA extraction, can be established to increase the ratio 
of CLas DNA in total DNA from citrus host, which in 
turn to increase the ratio of CLas reads in sequencing 
data obtained by PacBio platform and improve the qual-
ity of assembly of CLas genome.
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