
Suo et al. BMC Genomic Data           (2022) 23:67  
https://doi.org/10.1186/s12863-022-01072-8

RESEARCH

Screening of primary open-angle glaucoma 
diagnostic markers based on immune-related 
genes and immune infiltration
Lingge Suo1,2†, Wanwei Dai1,2†, Xuejiao Qin3, Guanlin Li4, Di Zhang1,2, Tian Cheng5, Taikang Yao5 and 
Chun Zhang1,2* 

Abstract 

Purpose: Primary open-angle glaucoma (POAG) continues to be a poorly understood disease. Although there were 
multiple researches on the identification of POAG biomarkers, few studies systematically revealed the immune-related 
cells and immune infiltration of POAG. Bioinformatics analyses of optic nerve (ON) and trabecular meshwork (TM) 
gene expression data were performed to further elucidate the immune-related genes of POAG and identify candidate 
target genes for treatment.

Methods: We performed a gene analysis of publicly available microarray data, namely, the GSE27276-GPL2507, 
GSE2378-GPL8300, GSE9944-GPL8300, and GSE9944-GPL571 datasets from the Gene Expression Omnibus database. 
The obtained datasets were used as input for parallel pathway analyses. Based on random forest and support vec-
tor machine (SVM) analysis to screen the key genes, significantly changed pathways were clustered into functional 
categories, and the results were further investigated. CIBERSORT was used to evaluate the infiltration of immune cells 
in POAG tissues. A network visualizing the differences between the data in the POAG and normal groups was cre-
ated. GO and KEGG enrichment analyses were performed using the Metascape database. We divided the differentially 
expressed mRNAs into upregulated and downregulated groups and predicted the drug targets of the differentially 
expressed genes through the Connectivity Map (CMap) database.

Results: A total of 49 differentially expressed genes, including 19 downregulated genes and 30 upregulated 
genes, were detected. Five genes ((Keratin 14) KRT14, (Hemoglobin subunit beta) HBB, (Acyl-CoA Oxidase 2) ACOX2, 
(Hephaestin) HEPH and Keratin 13 (KRT13)) were significantly changed. The results showed that the expression profiles 
of drug disturbances, including those for avrainvillamide-analysis-3, cytochalasin-D, NPI-2358, oxymethylone and 
vinorelbine, were negatively correlated with the expression profiles of disease disturbances. This finding indicated that 
these drugs may reduce or even reverse the POAG disease state.

Conclusion: This study provides an overview of the processes involved in the molecular pathogenesis of POAG in 
the ON and TM. The findings provide a new understanding of the molecular mechanism of POAG from the perspec-
tive of immunology.
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Background
Glaucoma is the leading cause of irreversible blindness 
worldwide. With the growing number and proportion 
of older persons in the population, it is projected that 
111.8 million people will have glaucoma in 2040 [1]. Pri-
mary open-angle glaucoma (POAG) is the most common 
type of glaucoma, accounting for 60–70% of all glaucoma 
patients [2]. In POAG, the anterior and posterior seg-
ments of the eye are affected, and serious damage may 
be inflicted upon the trabecular meshwork (TM) and 
optic nerve (ON) [2–4]. The TM is a specialized eye tis-
sue essential for the regulation of aqueous humor outflow 
and control of intraocular pressure (IOP), disturbances 
of which may lead to elevated IOP and glaucoma [5]. In 
general, POAG has an insidious onset and develops pain-
lessly and quietly, visual problems often late in the course 
of the disease, when significant and irreversible ON dam-
age occurs [1]. Neuroprotective therapies are not avail-
able, and current treatments are limited to lowering 
IOP, which can slow disease progression at early disease 
stages. However, over 50% of glaucoma cases are not 
diagnosed until irreversible ON damage has occurred [6].

Numerous POAG patient data have been collected 
in research [5, 7, 8], but the molecular pathogenesis of 
POAG remains largely obscure. Therefore, an effective 
treatment option that addresses these molecular changes 
is still missing. In recent years, accumulating evidence has 
shown that immune cell infiltration plays an important 
role in POAG development [9]. Zhang et  al. generalized 
that POAG may be associated with systemic disorders, 
mainly those related to the nervous system, endocrine sys-
tem and immune systems. It has been firmly established 
that the neuroendocrine system and immune system 
closely interact through mediators, such as hormones, 
neuropeptides, neurotransmitters and cytokines [10]. 
Cytokines mediate the biological effects of the immune 
system, and our previous study revealed an imbalance of 
T-helper (Th) 1-derived and Th2-derived cytokines in the 
serum of patients with glaucoma [11]. We also collected 
data from irises of normal individuals and those with 
POAG or chronic angle-closure glaucoma (CACG) [12].

Bioinformatics is an interdisciplinary subject that 
combines a broad spectrum of domains, including the 
fields of molecular biology, information science, sta-
tistics and computer science [13]. Machine learning, 
a trendy subfield of artificial intelligence (AI), focuses 
on extracting and identifying insightful and actionable 
information from big and complex data using different 

types of neural networks [14]. It is of great significance 
to reveal the molecular mechanism of disease by using 
these emerging technologies. Using omics technolo-
gies, we are able to measure the expression of several 
thousand molecules from one sample of affected tissue, 
leading to an exponential increase in data [15]. The data 
were used in bioinformatics analyses to identify key tran-
scription factors (TFs) associated with POAG to examine 
the pathogenesis of glaucoma and may provide a basis 
for the diagnosis of glaucoma and drug development. 
CIBERSORT is a method to describe the composition 
of immune cells in complex tissues based on their gene 
expression profiles [16]. Few studies have used CIBER-
SPORT to analyze immune cell infiltration in POAG. 
In this study, we identified the key genes from TM tis-
sue and ON tissue in patients with POAG compared 
with normal controls. The aim of this study was to gain 
a deeper understanding of the molecular pathogenesis 
of POAG by applying integrative bioinformatics analysis 
to the available human gene expression data of the TM 
and ON tissues in patients with POAG and controls. The 
obtained results enable us to identify possible drug tar-
gets to modulate the disease outcome.

Results
Systematic search
After the systematic search, the datasets of the four dif-
ferent human microarray studies were selected for further 
analyses. After correcting the batch effect, we combined 
the four GEO datasets GSE27276, GSE2378, GSE9944 
(GPL8300) and GSE9944 (GPL571) into the expression pro-
files of 110 samples (control group: 67 cases; POAG group: 
43 cases) (Fig.  1A-B). Difference analysis was performed 
by the limma package. The screening conditions of differ-
ent genes were P value < 0.05 and |logFC|> 0.585. Finally, 49 
differentially expressed genes were screened, including 30 
upregulated genes and 19 downregulated genes (Fig. 1C).

Pathway analysis
We further analyzed the pathways of these 49 candidate 
genes in the Metascape database. The results showed that 
these candidate genes were mainly enriched in structural 
molecular activity, epidermis development, extractive 
matrix, oxidoreductase activity, aminoglycan metabolic 
process, aging and other pathways (Fig.  2A). Moreover, 
we analyzed the protein–protein interaction (PPI) net-
work of genes in different gene sets by Cytoscape soft-
ware (Fig. 2B).

Keywords: Bioinformatics analysis, Primary open-angle glaucoma, Optic nerve, Trabecular meshwork, Immune 
infiltration



Page 3 of 16Suo et al. BMC Genomic Data           (2022) 23:67  

Key genes
We analyzed the above 49 differentially expressed genes 
by random forest and SVM to screen the key genes 
(Fig.  3A-B). According to the comprehensive scores of 
the two machine learning methods, we obtained the top 

5 genes as the key gene sets, which were (Keratin 14) 
KRT14, (Hemoglobin subunit beta) HBB, (Acyl-CoA 
Oxidase 2) ACOX2, (Hephaestin) HEPH and Keratin 13 
(KRT13) (Fig. 3C). The expression of five key genes in the 
POAG group and normal group is shown in Fig. 4.

Fig. 1 Two-dimensional PCA cluster plot before and after PCA for the combined expression profile. A, B shows two-dimensional PCA cluster 
plots before and after PCA for the combined expression profile. After correcting the batch effect, we combined the four GEO datasets GSE27276, 
GSE2378, GSE9944 (GPL8300) and GSE9944 (GPL571) into the expression profiles of 110 samples (control group: 67 cases; POAG group: 43 cases). C 
DEG volcano plot; red represents upregulated differentially expressed genes, and green represents downregulated differentially expressed genes
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A

B

Fig. 2 GO and PPI network analyses of DEGs. A GO biological function enrichment analysis. B PPI network analysis graph. GO, Gene Ontology; PPI, 
protein–protein interaction; DEGs, differentially expressed genes
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A

B

C

Fig. 3 Selection of diagnostic biomarkers and identification of key genes. A Select POAG biomarkers by random forest. B Select POAG biomarkers 
by SVM. C Key genes extracted from the random forest and SVM methods. SVM, support vector machine; Keratin 14, KRT14; Hemoglobin subunit 
beta, HBB; Acyl-CoA Oxidase 2, ACOX2; Hephaestin, HEPH; and Keratin 13, KRT13



Page 6 of 16Suo et al. BMC Genomic Data           (2022) 23:67 

Immune cell infiltration
The microenvironment is mainly composed of immune 
cells, extracellular matrix, a variety of growth factors, 
inflammatory factors and special physical and chemical 
characteristics, which significantly affect the sensitivity 
of disease diagnosis and clinical treatment. By analyzing 
the relationship between key genes and immune infil-
tration in the POAG dataset, we further explored the 
potential molecular mechanism of key genes affecting the 
progression of POAG. The results show that the propor-
tion of immune cells in each patient and the correlation 
between immune cells are shown in Fig. 5A-B. Compared 
with the normal group, the T-cell regulatory (Treg) level 
of samples in the POAG group was significantly higher 
(Fig. 5C).

We further explored the relationship between key 
genes and immune cells. The five key genes were highly 
correlated with immune cells. KRT14 was positively cor-
related with plasma cells and neutrophils and negatively 
correlated with regulatory T cells (Tregs) and mast cell 
resetting. HBB was positively correlated with activated 
NK cells and monocytes and negatively correlated with 
resting mast cells and resting dendritic cells. ACOX2 
was positively correlated with CD4 memory resting T 
cells and monocytes and negatively correlated with cel-
lular helper T cells and naïve CD4 T cells. HEPH was 
positively correlated with memory CD4 + T-cell resetting 
and regulatory T cells (Tregs) and negatively correlated 
with naive CD4 + T cells and follicular helper T cells. 

KRT13 was positively correlated with follicular helper 
and plasma cells and negatively correlated with regula-
tory T cells (Tregs) and resting mast cells (Fig.  6A). We 
further obtained the correlation between these key genes 
and different immune factors from the TISIDB data-
base, including immune modulators, chemokines and 
cell receptors (Fig.  6B-E). These analyses confirmed that 
these key genes are closely related to the level of immune 
cell infiltration and play an important role in the immune 
microenvironment.

Key gene‑related pathways
We used these five key genes in the gene set of this analy-
sis to further explore the transcriptional regulatory net-
work involved in key genes. Relevant transcription factors 
were predicted through the Cistrome DB online database, 
including 55 transcription factors predicted by KRT14, 92 
transcription factors predicted by HBB, 71 transcription 
factors predicted by ACOX2, 106 transcription factors 
predicted by HEPH and 57 transcription factors predicted 
by KRT13. Finally, a comprehensive transcriptional regu-
latory network of key POAG genes was constructed by 
visualization through Cytoscape (Fig. 7).

We studied the specific signaling pathways enriched by 
five key genes to explore the potential molecular mecha-
nism of key genes affecting the progression of POAG. 
We selected the significantly enriched pathways shown 
in Figs. 8 and 9. The pathways enriched with KRT14 by 
GO analysis included cell substrate junction assembly, 
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Fig. 4 The expression of five key genes in patients with the POAG group and participants in the normal group. A KRT14 is downregulated in 
patients with POAG. B HBB is upregulated in patients with POAG. C ACOX2 is upregulated in POAG. D HEPH is upregulated in POAG. E KRT13 
is downregulated in patients with POAG. P value < 0.05. Red represents normal groups, and green represents POAG groups. Keratin 14, KRT14; 
Hemoglobin subunit beta, HBB; Acyl-CoA Oxidase 2, ACOX2; Hephaestin, HEPH; and Keratin 13, KRT13
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cell junction assembly and other pathways. The path-
ways enriched by KEGG included ladder, cancel and so 
on Butanoate metabolism and other channels [17]. The 
pathways enriched with HBB by GO analysis included 
brown fat cell differentiation and corporate cytoskel-
eton organization. The pathways enriched by KEGG 
include Angel processing and presentation and focal 
adhesion. The pathways enriched with ACOX2 by GO 
analysis included spindle localization and transitional 
initiation. The pathways enriched by KEGG include 
promote metabolism and pyruvate metabolism. The 
pathways enriched with HEPH by GO analysis included 
numeric expression repair DNA recognition and lamel-
lipodium organization. The pathways enriched by KEGG 
included glycerophospholipid metabolism and beta ala-
nine metabolism. The pathways enriched with KRT13 by 
GO analysis included autophagosome organization and 
column cuboidal epithelial cell differentiation. The path-
ways enriched by KEGG included the circuit cycle, TCA 
cycle, and cytokine receptor interaction (Fig. 9).

Gene regulatory network analysis of key genes in POAG
We predicted and analyzed the five key genes through 
the miRWalk database and ENCORI database to 
obtain their possible miRNAs and lncRNAs. First, the 
mRNA–miRNA relationship pairs related to these five 
key mRNAs were extracted from the miRWalk data-
base. We retained only 35 mRNA–miRNA relationship 
pairs with TargetScan of 1 or miRDB of 1 (including 4 
mRNAs and 13 miRNAs). Then, we predicted the inter-
acting lncRNAs according to these miRNAs, in which 
1112 pairs of interactions (including 2 miRNAs and 823 
lncRNAs) were predicted. Finally, we constructed the 
ceRNA network through Cytoscape (V3.7) (Fig. 10).

POAG biomarkers
We discussed the prediction efficiency of key genes 
through the ROC curve verified by diagnostic effi-
ciency. The results showed that the area under the 
AUC of KRT14 was 0.825; the area under the AUC of 
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Fig. 5 Correlation plots of immune cell infiltration analysis. A The proportion of 22 immune cells. B Correlation heatmap of 22 immune cells. Red 
represents a positive correlation, purple represents a negative correlation, and the darker the color is, the stronger the correlation. C Plot of the 
proportion of infiltration by 22 types of immune cells in normal control samples versus in POAG samples. Blue represents control samples; yellow 
represents POAG samples

(See figure on next page.)
Fig. 6 The relationship between key genes and immune cells. A The five key genes (KRT14, HBB, ACOX2, HEPH and KRT13) were highly correlated 
with immune cells. B The relationship between key genes and chemokines. C The relationship between key genes and immunoinhibitors. D The 
relationship between key genes and MHC E The relationship between key genes and immunostimulators. MHC, major histocompatibility complex. 
Keratin 14, KRT14; Hemoglobin subunit beta, HBB; Acyl-CoA Oxidase 2, ACOX2; Hephaestin, HEPH; and Keratin 13, KRT13
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HBB was 0.740; the area under the AUC of ACOX2 
was 0.778; the area under the AUC of HEPH was 
0.801; and the area under the AUC of KRT13 was 
0.816. These results show that these five key genes 
have good prediction efficiency for POAG and may 
better predict the occurrence and development of dis-
eases (Fig. 11A-E).

Drug targeting prediction in POAG
We divided the differentially expressed mRNAs into 
upregulated and downregulated groups and predicted 
the drug targets of the differentially expressed genes 
through the Connectivity Map database. The results 
showed that the expression profiles of drug disturbances, 
such as avrainvillamide-analysis-3, cytochalasin-D, NPI-
2358, oxymethylone and vinorelbine, were negatively 
correlated with the expression profiles of disease distur-
bances (Fig.  12). This finding indicated that these drugs 
may reduce or even reverse the POAG disease state.

Discussion
POAG is a chronic retinal neurodegeneration disease 
characterized by changes in the anterior and posterior 
segments of the eye; in addition, serious damage may 
be detected in the TM and ONH [1, 5, 8]. Lowering IOP 
using drugs or surgery is the only intervention currently 
available [6]. However, clinical evidence indicates that 
lowering IOP does not prevent progression in all POAG 
patients. Consequently, non-IOP factors are involved 
in the disease [2]. With the rapid development of sci-
ence and technology, bioinformatics provides a power-
ful strategy for the screening of molecular markers [18]. 
Biomarkers reflect changes at the molecular level and can 
accurately monitor pathological changes in the TM and 
ONH and provide important information for the diagno-
sis of POAG [5, 15, 19–23]. Nevertheless, the detection of 
POAG lesions using molecular biology methods is sub-
optimal, and treatments are currently in a limited phar-
macotherapy phase [6].
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In the present study, to screen the pathogenic genes 
involved in POAG, an integrated analysis was performed 
by using microarray datasets in glaucoma derived from 
the GEO database. The functional annotation and poten-
tial pathways of DEGs were additionally examined by GO 
and KEGG enrichment analyses. A POAG-specific tran-
scriptional regulatory network was constructed to identify 
crucial transcription factors that target the key genes in 
patients with POAG. We used random forest and the SVM 
method to screen five potential key genes in both human 
TM and ONH tissue. A growing number of researchers 
realize that immune infiltration is related to the diagnosis of 
POAG [10–12]. Therefore, analyzing the pattern of POAG 
immune cell infiltration and finding specific diagnostic 
markers have profound significance for POAG patients. 
Subsequently, the CIBERSORT algorithm performed 
deconvolution analysis on the immune microenvironment 
to assess the proportion of immune cells in POAG.

We identified key differentially expressed genes 
between POAG and normal tissues by performing 
a combined analysis of TM and ONH. A total of 49 
DEGs were identified, including 19 downregulated 
genes and 30 upregulated genes. These 49 differen-
tially expressed genes were further analyzed by ran-
dom forest and SVM to screen the key genes. Five 
genes (KRT14, HBB, ACOX2, HEPH and KRT13) 
were significantly changed. We found that these key 
genes were highly correlated with immune cells. The 
immune microenvironment is composed of a variety of 
lymphocytes, such as T cells, B cells and macrophages, 
etc. [24]. From the immune infiltration analysis, we 
found that there was a significant difference in the rel-
ative cell content of 22 types of immune cells (e.g., B 
cells naïve, B cell memory, plasma cells, T cells CD8, T 
cells CD4 naïve, T cells CD4 memory resting) in nor-
mal control samples versus in POAG samples.
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KRT14 is a member of the type I keratin family of 
intermediate filament proteins [25]. KRT 14 is expressed 
in a variety of cells in humans. It is recovered as a het-
erodimer with KRT5 and forms the cytoskeleton of epi-
thelial cells [26, 27]. Gautam et  al., using multispecies 
single-cell transcriptomic analysis of the human eye, 
found that KRT 14 was expressed in corneal epithelial 
cells [28]. However, previous studies did not perform a 
deeper investigation of POAG. In our study, we found 
that KRT14 was expressed in both TM and ON tissues 
in humans. KRT14 was highly correlated with immune 
cells (plasma cells, neutrophils, etc., and negatively cor-
related with regulatory T cells (Tregs) and mast cell 
resetting. HBB (hemoglobin subunit beta) is encoded by 
the HBB gene on human chromosome 11 [20]. HBB was 
positively correlated with activated NK cells and mono-
cytes and negatively correlated with resting mast cells 
and resting dendritic cells. The ACOX2 gene encodes 
the enzyme Acyl-CoA oxidase 2 in human autosome 
3, oxidizing the Coenzyme A esters of bile acid and di-
trihydroxycholestanoic acid intermediates. It is located 
in the peroxisomes of cells and has a tripeptide at the 
C-terminal end of the protein formed by serine-lysine-
leucine that serves as a peroxisome localization signal. 
Deficiency of this enzyme causes an accumulation of 

fatty acids and bile intermediates, generating Zellweger 
syndrome. ACOX2 was positively correlated with CD4 
memory resting T cells and monocytes and negatively 
correlated with cellular helper T cells and naïve CD4 T 
cells. HEPH (Hephaestin) is involved in the metabolism 
and homeostasis of iron and possibly copper [29]. It is a 
transmembrane copper-dependent ferroxidase responsi-
ble for transporting dietary iron from intestinal entero-
cytes into the circulatory system. HEPH was positively 
correlated with memory CD4 + T-cell resetting and regu-
latory T cells (Tregs) and negatively correlated with naive 
CD4 + T cells and follicular helper T cells. The KRT13 
(keratin 13) gene encodes a type I cytokeratin that is 
expressed in the differentiated cells of noncornified strat-
ified squamous epithelia [30, 31]. KRT13 is positively cor-
related with T-cell follicular helper and plasma cells and 
negatively correlated with T-cell regulatory (Tregs) and 
resting mast cells.

The ocular innate immune response relevant to glau-
coma involves the complement cascade, microglia, astro-
cytes, and Müller cells. Autoantibodies, tumor necrosis 
factor (TNF)-alpha, and other products of adaptive B 
and T cells are also featured prominently in the glauco-
matous adaptive immune response. However, research 
has not provided clear immune infiltration among these 
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Fig. 10 The five key genes through the miRWalk database and ENCORI database to obtain their possible miRNAs and lncRNAs. Keratin 14, KRT14; 
Hemoglobin subunit beta, HBB; Acyl-CoA Oxidase 2, ACOX2; Hephaestin, HEPH; and Keratin 13, KRT13
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cells [9]. Thus, in our study, based on the immune infil-
tration analysis between key genes and immune cells, we 
divided the differentially expressed mRNAs into upregu-
lated and downregulated groups and predicted the drug 
targets of the differentially expressed genes through the 
Connectivity Map database. The results showed that the 
expression profiles of drug disturbances such as avrain-
villamide-analysis-3, cytochalasin-D, NPI-2358, oxym-
ethylone and vinorelbine were negatively correlated with 
the expression profiles of disease disturbances. NPI-2358 
and vinorelbine are tubulin inhibitors. Cytochalasin-d is 
an actin polymerization inhibitor. Oxymetholone is an 
androgen receptor agonist. avrainvillamide-analog-3is 
a nucleophosmin inhibitor. This finding indicated that 
these drugs may reduce or even reverse the POAG dis-
ease state.

There were several limitations to this study. First, due 
to the limited number of samples, there is still a need to 
confirm these preclinical observations in future clinical 
studies for novel biomarkers. Second, CIBERSORT is 
based on the principle of linear support vector regres-
sion and uses gene expression data in reverse to deduce 

the result of immune cell infiltration. Indeed, it is not 
based on experimental data, and further verification 
of immune cell infiltration by a large number of experi-
ments is needed. Third, we performed mining and analy-
sis of previously published data; although some previous 
studies showed similar results, the related molecules and 
their mechanisms at the molecular, cell, and tissue levels 
require validation.

In conclusion, the overlap of the random forest and 
SVM algorithms was obtained, and five key genes were 
eventually recognized in both human TM and ONH tis-
sue. We found that it may be used as a diagnostic marker 
for POAG. To understand POAG development, GO and 
GSEA of the selected genes supplied a more specific 
molecular mechanism. To date, the relationship between 
key genes and immune infiltration in both TM and ONH 
tissues has been rarely reported. The mechanism of key 
genes and immune infiltration-related factors in the diag-
nosis of POAG remains to be explored. Further inves-
tigation of these immune cells may identify targets of 
immunotherapy for POAG and help POAG patients ben-
efit from immunomodulatory therapy.

Fig. 11 Verification of biomarkers. A Prediction ROC for ACOX2. B Prediction ROC for HBB. C Prediction ROC for HEPH. D Prediction ROC for KRT13. E 
Prediction ROC for KRT14. Keratin 14, KRT14; Hemoglobin subunit beta, HBB; Acyl-CoA Oxidase 2, ACOX2; Hephaestin, HEPH; and Keratin 13, KRT13
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Materials and methods
Material and data
The datasets used in the present study were downloaded 
from the National Center of Biotechnology Information 
(NCBI) Gene Expression Omnibus (GEO). Four sets of 
POAG mRNA (GSE27276-GPL2507, GSE2378-GPL8300, 
GSE9944-GPL8300, GSE9944-GPL571) data were 
obtained. The detailed information is shown in Table  1. 
In total, 43 POAG patients and 67 normal individuals 
were enrolled in our study from these four datasets.

Screening of key genes
The differentially expressed genes (DEGs) in the GEO 
dataset (P < 0.05 and |logFC|> 0.585) were screened by 
difference analysis, and then the candidate gene sets were 
further screened by random forest and SVM algorithms. 
Among them, random forest is an integrated learning 
algorithm based on a decision tree. Multiple samples are 
selected from the sample sets as a training set by sam-
pling with replacement. The decision tree is generated 

from the obtained sample sets by sampling. At each gen-
erated node, features without repetition are randomly 
selected. Based on optimal features to divide the sample 
sets, the prediction results are determined. In this study, 
the features were evaluated by the random forest algo-
rithm. Using %IncMSE to evaluate the significance, 1000 
trees were built and repeated 50 times. SVM is a machine 
learning method based on SVM. Optimal variables were 
identified by deleting SVM-generated feature vectors. 
For the sake of further recognizing the diagnostic value 
of disease biomarkers, a support vector machine model 
was established according to the “e1071” software pack-
age. Finally, the top features were retained for follow-up 
analysis.

GO and KEGG functional annotation
The differentially expressed genes were functionally 
annotated using the Metascape database (www. metas 
cape. org) to comprehensively explore the functional 
correlation of these genes. For the specific genes, we 

Fig. 12 Drug targeting prediction in POAG. A Avrainvillamide-analysis-3. B NPI-2358. C vinorelbine. D cytochalasin-D. E oxymethylone

http://www.metascape.org
http://www.metascape.org
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performed Gene Ontology (GO) analysis and Kyoto 
Encyclopedia of Gene Genome (KEGG) pathway analy-
sis. Minimum overlap ≥ 3 and P ≤ 0.01 were considered 
statistically significant.

Analysis of immune cell infiltration
CIBERSORT is widely used to evaluate the type of immune 
cell in the microenvironment. The tool is based on the 
principle of a linear support vector to perform deconvo-
lution analysis on the expression matrix of immune cell 
subtypes. It contains 547 biomarkers and 22 phenotypes 
of human immune cells, covering plasma cells, B cells, T 
cells, and myeloid cell subsets. Using the CIBERSORT 
algorithm, this study analyzed data from POAG patients 
and quantified the relative proportions of 22 infiltrating 
immune cells. Furthermore, this study performed Pearson 
correlation analysis on immune cells and gene expression.

Gene regulatory network analysis of key genes
The Cistrome DB is an up-to-date, scalable, and power-
ful tool to process large batches of ChIP-seq and DNase-
seq  datasets, which map the genome-wide locations of 
transcription factor-binding sites, histone posttransla-
tional modifications and regions of chromatin accessible 
to endonuclease activity [32]. Currently, the Cistrome DB 
contains approximately 30,451 human and 26,013 mouse 
samples. This study explored the regulatory relationships 
between transcription factors and key genes based on the 
Cistrome DB database with genome file setting as hg38 
and the transcription initiation site 10 KB, which was vis-
ualized through Cytoscape.

Gene set enrichment analysis (GSEA)
GSEA uses a predefined gene set to rank the genes 
according to the degree of differential expression in the 
two types of samples and then tests whether the preset 
gene set is enriched at the top ranking or bottom rank-
ing. This study compared the differences in KEGG and 
GO signaling pathways between participants in the high 
expression group and the low expression group by GSEA 
to explore the molecular mechanism of key genes in the 
two groups, in which the number of replacements was set 
to 1000 and the type of replacement was set to phenotype.

Drug targeting prediction
The connectivity map (CMAP), which was devel-
oped by the Broad Institute, is a resource created to 
enable data-driven studies on drug mode-of-action 
and drug repositioning; it is mainly used to reveal 
the functional relationship among small molecular 
compounds, genes and disease status. It contains the 
microarray data of 1309 small molecule drugs before 
and after treatment of 5 human disease cell lines. It 
provides various treatment conditions, including dif-
ferent drugs, different concentrations, different treat-
ment durations and so on.

Statistical analysis
All statistical analyses were performed in R language 
(version 3.6). All statistical tests were bilateral (P < 0.05).
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