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Abstract 

Background: Emerging wheat stem rust races have become a major threat to global wheat production. Finding 
additional loci responsible for resistance to these races and incorporating them into currently cultivated varieties 
is the most economic and environmentally sound strategy to combat this problem. Thus, this study was aimed at 
characterizing the genetic diversity and identifying the genetic loci conferring resistance to the stem rust of wheat. 
To accomplish this, 245 elite lines introduced from the International Center for Agricultural Research in the Dry Areas 
(ICARDA) were evaluated under natural stem rust pressure in the field at the Debre Zeit Agricultural Research Center, 
Ethiopia. The single nucleotide polymorphisms (SNP) marker data was retrieved from a 15 K SNP wheat array. A mixed 
linear model was used to investigate the association between SNP markers and the best linear unbiased prediction 
(BLUP) values of the stem rust coefficient of infection (CI).

Results: Phenotypic analysis revealed that 46% of the lines had a coefficient of infection (CI) in a range of 0 to 19. 
Genome-wide average values of 0.38, 0.20, and 0.71 were recorded for Nei’s gene diversity, polymorphism information 
content, and major allele frequency, respectively. A total of 46 marker-trait associations (MTAs) encompassed within 
eleven quantitative trait loci (QTL) were detected on chromosomes 1B, 3A, 3B, 4A, 4B, and 5A for CI. Two major QTLs 
with –log10 (p) ≥ 4 (EWYP1B.1 and EWYP1B.2) were discovered on chromosome 1B.

Conclusions: This study identified several novel markers associated with stem rust resistance in wheat with the 
potential to facilitate durable rust resistance development through marker-assisted selection. It is recommended that 
the resistant wheat genotypes identified in this study be used in the national wheat breeding programs to improve 
stem rust resistance.
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Background
Wheat (Triticum aestivum L.) is a leading crop, both in 
terms of economic value and area of production world-
wide [1, 2]. Developing countries account for nearly 77% 
of total global wheat imports [3]. Wheat provides nearly 
20% of daily world human caloric requirements [4] and 

demand is expected to increase to 60% by 2050 [5]. 
However, various challenges have hindered meeting this 
demand, with recurrent emerging fungal pathogens prov-
ing to be one of the leading problems worldwide [6].

Wheat stem (black) rust, caused by Puccinia graminis 
Pers. f. sp. tritici, Eriks. & E. Henn (Pgt), has been recog-
nized as a major threat to global food security [7, 8]. Con-
cerns regarding this disease have increased significantly, 
especially following the 1998 outbreak of the novel viru-
lent race Ug99 which originated in Uganda. Since then, 
this race has produced 13 different variants throughout 
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East Africa [9, 10]. The race can infect 90% of the wheat 
varieties grown worldwide [11] and yield losses can reach 
up to 100% in susceptible cultivars under conducive envi-
ronmental conditions [12]. Races other than Ug99 were 
also reported in different parts of Western Europe. In 
2013, a stem rust epidemic arose in Germany and spread 
to Denmark, Sweden, and the UK [13]. In 2016/2017, 
Italy chronicled two epidemics of wheat stem rust caused 
by race TTRTF, which destroyed tens of thousands of 
hectares of cultivated wheat [14]. All these reports indi-
cate that the disease is re-emerging as a threat to wheat 
production globally.

Ethiopia is considered to be a hotspot for the devel-
opment and evolution of new Pgt races [15]. Many new 
variants of Pgt, which were first identified in this coun-
try, have spread to different parts of the world. TTKSK, 
TKTTF, TRTTF, JRCQC, and TTTTF are the current 
major wheat stem races that are threatening wheat pro-
ductivity in Ethiopia [16]. In 2013/2014, severe stem rust 
epidemics were caused by Pgt race TKTTF (not a mem-
ber of Ug99 lineage), resulting in almost total yield loss 
on widely grown wheat cultivars. Since then, this race has 
spread widely and has been found in 10 different coun-
tries, including Western Europe [17].

To overcome this problem, host plant resistance devel-
oped through molecular marker technology is the most 
sustainable, cost-effective, and environmentally friendly 
approach for controlling rust diseases [7, 18]. Accord-
ingly, many molecular markers linked with Pgt resistance 
were discovered throughout the wheat genome during 
the past couple of decades using genome-wide associa-
tion mapping (GWAS). GWAS has been the most effec-
tive tool to detect several quantitative trait loci (QTLs), 
with moderate to minor effects against Pgt disease [19]. 
However, factors such as population structure and kin-
ship similarity should be controlled properly to avoid 
false-positive QTLs. To overcome this, several mod-
els, including the mixed linear model (MLM) have been 
implemented. Since the first report in 2007 [20], various 
GWAS studies were carried out successfully and high 
numbers of QTLs have shown Pgt resistance in wheat 
[21–24]. So far, more than 80 genes conferring resist-
ances to Pgt have been cataloged in common wheat and 
wheat relatives [24]. However, only a few genes are effec-
tive against all pathogen strains. Of these, Sr2, Sr13, Sr22, 
Sr25, Sr26, Sr35, Sr39, and Sr40 were reported to be the 
most effective against Ug99 [18].

The frequent co-evolution of host and pathogen 
remains a big challenge in the durability of the released 
resistant cultivars [25]. The narrow genetic diversity of 
cultivated wheat cultivars [22, 26] and the impact of cli-
mate change [12] are the major cause of this problem. 
Thus, additional sources of resistant QTLs, followed by 

marker-assisted gene pyramiding, are required to pro-
duce durable resistant varieties. Therefore, this study 
aimed to characterize the genetic diversity and to iden-
tify novel QTLs associated with resistance to stem rust of 
wheat through GWAS.

Results
Phenotypic variation and heritability
The performance of genotypes towards stem rust resist-
ance varied greatly. For instance, the disease severity 
score was ranged between 10 and 80%. The majority 
(46.7%) had a disease severity (DS) score of 15–30% 
whilst 8.5% had a DS score of 0% (Fig. 1, Additional file 1). 
The best linear unbiased estimates (BLUP) values of DS 
and coefficient of infection (CI) were calculated from 
adjusted means of each accession across two years, and 
are summarized in Fig. 1.

The data of disease severity (DS) and infection response 
(IR) were combined to define the disease response as the 
coefficient of infection (CI) and 71% of lines had less than 
30 (Fig.  1C). Of these, the top twenty resistance lines 
(presented in Table 1) ranged with the average CI values 
of 4.5 for pedigree SERI.1B//KAUZ/HEVO/3/AMAD/4/
CHAM-6/FLORKWA-2 to 12 for pedigree SERI.1B//
KAUZ/HEVO/3/AMAD/4/WEAVER/JACANA. Addi-
tional genotypes scored between 6 to 80 of CI and are 
presented in Additional  file  1. On the other hand, all 
local controls (i.e. Digelu, Kubssa, Hidasse, Honqolo, and 
Ogolcho) were susceptible, with average CI ranging from 
60 for HIDASSE to 80 for OGOLCHO and HONQOLO.

The ANOVA analysis revealed highly significant vari-
ation among genotypes (P  < 0.001) and genotype x year 
interactions (P < 0.001) for all parameters. Heritability 
(H) values for DS were 79% and IR 72%, suggesting that 
all parameters had a strong genetic basis. In addition, 
the disease distribution of the breeding lines was high 
between seasons, with average correlations of 0.76, 0.85, 
and 0.78 for DS, IT, and CI, respectively (Table 2). 

Population structure and genetic diversity analysis
The population structure of the panel was inferred 
through the Bayesian clustering model, principal compo-
nent analysis (PCA), and neighbor-joining (NJ) tree. The 
Bayesian clustering model applied on STRU CTU RE soft-
ware and subsequent application of STRU CTU RE HAR-
VESTER showed a delta K peak value of two (Fig. 2A). As 
a result, accessions were classified into two sub-popula-
tions composed of 106 and 139 lines in sub-populations 
1 and 2, respectively (Fig.  2C). The scree plot of PCA 
showed that weak kinship existed among the lines. For 
the first 10 principal components (PCs), variances of SNP 
markers were changed from 7.5% (PC1) to 2% (PC10) and 
between 0 and 2% after PC10 (Fig. 2B).
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Phylogenetic tree analysis of the genetic relation-
ship between the populations was carried out based on 
the distance-based neighbor-joining tree on TASSEL 
software v5.2.35 followed by web-based visualization 
software iTOL. The resulting dendrogram shows three 
phylogenetic groups color-coded with a STRU CTU RE 
probability distribution. This is not consistent with the 
STRU CTU RE result (which was two groups). Since the 
genotypes are elite lines, passed by complex breeding 
history, such inconsistency is expected. However, the 
majority of lines were still grouped in the same group as 
the STRU CTU RE result and some lines were grouped 
in the mixed group. For instance, 78 (56%) of the lines 
in the first group were composed of a sub-population 1, 
whereas 61 lines (44%) were categorized in subpopula-
tion 2. The second group was composed mainly of sub-
population 2, which consists of 49 (70%) lines; whereas 
21 (30%) lines were classified in subpopulation 1. The 
third group was composed of 58 (76%) lines from sub-
population 2, and 21 (30%) lines from subpopulation 
1(Fig. 3).

Genetic data and linkage disequilibrium
Once sub-optimal quality markers had been filtered out, 
9523 SNP markers were retained from 245 lines. The dis-
tribution of SNPs across the A, B, and D sub-genomes 
was 50, 39, and 11%, respectively. The maximum number 
of SNP markers was recorded on chromosome 2B (930) 
and the minimum number was on chromosome 4D (48) 
(Fig. 4). The mean genome-wide heterozygosity, genome-
wide polymorphic information content (PIC), and gene 
diversity were 0.006, 0.2, and 0.38, respectively. The PIC 
scores of SNPs varied, with only 1% being highly inform-
ative (> 0.5), while 75 and 24% of markers had moderate 
(0.25–0.5) and least (< 0.2) PIC scores, respectively.

Linkage disequilibrium decay based on SNP markers of 
each chromosome was calculated as the Pearson corre-
lation coefficient  (r2) between marker pairs as a function 
of genetic distance (cM). The LOESS curve intercepted 
the line of critical value at 6 cM in A genome, 8 cM in B 
genome, and 5 cM in D genome, indicating that all mark-
ers within these ranges were considered as a single locus 
(Fig. 5).

Fig. 1 Distribution of adult plant stage disease resistance (APR) response and best linear unbiased estimates (BLUPs) as disease severity (DS), and 
coefficient of infection (CI). (A) BLUPs of DS; (B) BLUPs of CI; (C) Frequency of genotypes for disease severity (DS); (D) frequency of genotypes for the 
coefficient of infection
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Marker‑trait associations
A mixed linear model (MLM) was implemented for 
MTA, including the population structure and kinship 
similarity matrix (Q + K) and the BLUPs estimated values 

of CI of genotypes and quality checked SNP markers. The 
model appropriately discovered valuable MTAs with nei-
ther inflation (false-positive/type I error) nor overcorrec-
tion (false-negative/type II error) problems as depicted 
from the Q-Q plot (Fig. 8).

A total of 46 MTAs included in 11 QTLs were discov-
ered for CI with the considered exploratory significant 
threshold (−log1o(p) ≥ 3). The highest number of MTAs 
(44) was detected on the B sub-genome, of which 36, 4, 
3, and 1 MTAs were located on chromosomes 1B, 3B, 
4B, and 5B, respectively (Table 3, Fig. 7). The remaining 
2 QTLs were identified from chromosomes 3A and 4A. 
The explained phenotypic variance of QTLs was taken 
from the most significant SNP marker (QTL tag-SNP). 
The three QTLs with high explained phenotypic variance 
(PV) of tag SNPs were EWYP1B.4 (8.8%), EWYP1B.5 
(8.37%), and EWYP1B.3 (8.16%). The other PV of QTLs 
tag-SNPs ranged from 7.48 to 4.76% (Table  3, Fig.  7). 
Details of markers distribution in each accession are pre-
sented in Additional file 1.

Discussion
Stem rust has been increasing in severity and incidence 
and now poses a serious threat to global wheat produc-
tion [8]. To overcome this threat, efforts are ongoing 

Table 1 Lists of top resistant lines and their pedigree during 2017/2018 main season at Debre Zeit Agricultural Research Center, 
Ethiopia

No Pedigree Disease severity and response to Sr

2018 2019

1 SERI.1B//KAUZ/HEVO/3/AMAD/4/CHAM-6/FLORKWA-2 10RMR 15MR

2 SERI.1B//KAUZ/HEVO/3/AMAD/4/MO88/MILAN 15MR 10MR

3 SERI.1B//KAUZ/HEVO/3/AMAD/4/TNMU/MILAN/5/WATAN-12 15MR 10MR

4 PBW343*2/KUKUN//22SAWSN – 97 10MRMS 15MR

5 SERI.1B//KAUZ/HEVO/3/AMAD/4/ESDA/SHWA//BCN 10MR 10MR

6 SERI.1B*2/3/KAUZ*2/BOW//KAUZ/4/SHIHAB-7 10MR 10MR

7 CROC-1/AE.SQUARROSA (224)//OPATA/3/FLAG-7 10MR 10MR

8 TRACHA-2/SHUHA-3/3/SHUHA-7//SERI 82/SHUHA’S′ 15MRMS 10MRMS

9 SERI.1B//KAUZ/HEVO/3/AMAD/4/PFAU/MILAN 15MR 10MR

10 WATAN-7/SEKHRAH-2 10MR 15MRMS

11 WEAVER/WL 3928//SW 89.3064/3/SOMAMA-3 15MRMS 10MR

12 SERI.1B//KAUZ/HEVO/3/AMAD/4/SHUHA-7//SERI 82/SHUHA’S′ 15MR 15MS

13 KAUZ’S′/SERI/3/TEVEE’S′//CROW/VEE’S′ 15MRMS 15MR

14 ATTILA*2/CROW/3/VEE#5/SARA//DUCULA 15MR 15MR

15 TILILA/MUBASHIIR-1 15MR 15MR

16 QAFZAH-27/SEKSAKA-6 15MR 15MR

17 SERI.1B*2/3/KAUZ*2/BOW//KAUZ/4/SHIHAB-7 15MR 15MR

18 STAR*3/LOTUS-5/3/CHUM//7*BCN/4/FLAG-2 15MR 10MR

19 HADIAH-14/ANGI-2 10MRMS 15MRMS

20 SERI.1B//KAUZ/HEVO/3/AMAD/4/WEAVER/JACANA 15MR 15MR

Table 2 Mean response, variance component estimates and 
heritability for IR, DS, and CI variables

Disease severity (DS); infection response (IR); coefficient of infection (CI); BLUEs, 
best linear unbiased estimate; σ2G estimate of genotypic variance; σ2E estimate 
of environmental variance; σ2GxE is the genotype by environment interaction 
variance, σ2 error is the residual error variance; heritability (H); r Pearson’s 
correlation coefficients among stem rust DS, IT, and CI between two seasons. 
*, **, *** and ns represents significance at P < 0.05, P < 0.01, P < 0.001, and not 
significant, respectively

DS (%) IR(0–1) CI

Range 10–80 0.3–1 3–80

Grand mean 33.90 0.8 28.27

BLUEs 32.60 0.8 26.902

σ2
G 385.3*** 0.013*** 374.5***

σ2
E 21.05* 0.000ns 15.7 ns

σ2
GxE 20.70** 0.005ns 24.1**

σ2 error 166.10 0.004 200.3

H 78.95 72.2 75.7

CV
r

37.93 0.76 8.52 0.85 50.06 0.78
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worldwide to monitor rust diseases, identify rust patho-
types, and evaluate wheat germplasm for rust resistance 
[36]. As part of the global effort, this study was designed 
to quantify the existing allelic variation of breeding lines 
and to search for sources of resistant QTL for Pgt resist-
ance. Consequently, 245 elite bread wheat lines were 
evaluated in the field condition to identify QTLs for 
adult plant resistance to wheat stem rust. A significant 
variation was observed between breeding lines for adult 
plants’ resistance to stem rust. This study detected sev-
eral MTAs included in 11 different QTLs with different 
effects that could potentially play an important role in 
future marker-assisted pyramiding against the disease.

Field evaluation of wheat germplasm for resistance to stem 
rust
Disease response characterization under high disease 
pressure in field conditions remains the best stem rust 
management strategy in breeding for developing stem 
rust-resistant cultivars [37]. Ethiopia is considered to be 
a hotspot for the development of Pgt race diversity and 
frequent disease epidemics. Studies carried out in Ethio-
pia showed that most previously identified races such 
as TTKSK, TKTTF, TTTTF, TRTTF, RRTTF, and oth-
ers were virulent on most varieties grown in the country 

[38]. Accordingly, many field evaluation studies for Pgt 
response have been carried out in different wheat-grow-
ing regions of the country [22, 39, 40]. Most elite breed-
ing lines skewed towards moderate resistance, although 
some differences were observed between individual 
genotypes. The two parameters (i.e. DS and IR) showed 
moderate to high heritability with significant variation 
among lines and genotype x year interactions, indicat-
ing that most of the existing variation was due to genetic 
bases. CI has been used as the most efficient trait to dis-
cover QTLs of stem rust resistance in wheat via GWAS 
analysis [23, 41].

Population structure and genetic diversity
Systematic characterization of population structure 
and genetic diversity provides a foundation for efficient 
exploitation of genetic resources and can enhance breed-
ing for durable stem rust resistance in wheat. For the 
population structure study, three different approaches 
were applied. Although there is considerable overlap 
between the three techniques for population analysis, the 
overall conclusion suggests that there is no clear and sub-
stantial separation between individual genotypes. This 
could be owing to the panel’s complicated evolutionary 
and breeding history. It is suggested that more researches 

Fig. 2 Structure clustering and principal components of 245 wheat lines based on 9523 SNP markers. (A) Plots of delta K; (B) Scree plot of PCA and 
(C) probability of population group based on K = 2
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Fig. 3 A dendrogram illustrating the clusters of wheat lines based on Nei’s genetic distance. The lines were color-coded with STRU CTU RE 
probability distribution. Clusters with similar pedigrees and genetic backgrounds were named by their common parent

Fig. 4 Genome-wide distributions of single nucleotide polymorphisms (SNPs) based on 15 K genotyping results
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need to be done to better understand the relationships 
between genotypes from different groups.

The mean PIC and gene diversity of the genome was 
0.25 and 0.3, respectively. Several studies have previously 
reported various rates of Nei’s gene diversity and PIC in 
different wheat populations [22, 34, 42–44].

Linkage disequilibrium and MTAs
The LD of the genome and sub-genomes of the current 
panel was estimated using SNP markers. The fastest LD 
decay was observed on the D sub-genome, which agreed 
with the previous report [45]. The LOESS curve inter-
cepted the line of critical value at 6 cM in A genome, at 
8 cM in B genome, and 5 cM in the D genome, indicating 
that all markers within these ranges are considered as a 
single locus (Fig. 5). Since many significant SNP markers 
(36 MTAs) were identified in the present study, the LD 
pattern in chromosome 1B was analyzed independently 
and detected five LD blocks (Fig.  6). Similar large LD 
blocks in 1B chromosomes have been reported previ-
ously [46].

The current study unveiled 46 SNP significant markers 
encompassed within 11 QTLs. Of these, only two QTLs 
(EWYP1B.1, EWYP1B.2) were identified as major QTLs 
(−log1o(p) ≥ 4). EWYP1B.1, EWYP3A, EWYP3B.1, and 
EWYP5B, respectively, were found near genomic areas 
of Sr31, Sr27, Sr2, and Sr56 [33]. The remaining seven 
QTLs (EWYP1B.2, EWYP1B.3, EWYP1B.4, EWYP1B.5, 
EWYP3B.2, EWYP4A, and EWYP4B) were newly dis-
covered in the current study. These new QTLs could 
play paramount importance in enhancing Pgt resistance 
through marker-assisted selection or introgression.

We found five QTLs on chromosome 1B (EWYP1B.1, 
EWYP1B.2, EWYP1B.3, EWYP1B.4, and EWYP1B.5) that 
encompassed 36 MTAs ranging in size from 30.34 cM 
(wsnp_Ku_c13229_21142792) to 114 cM (Tdurum_con-
tig10036_977). On this chromosome, three resistance 
genes (Sr14, Sr31, and Sr58) were cataloged previously 
[32]. Of these, only Sr31 has been reported in association 
with wheat stem rust disease at locus EWYP1B. 1[27, 
28]. The remaining four QTLs (EWYP1B.2, EWYP1B.3, 
EWYP1B.4, and EWYP1B.5) were likely novel resistance 
loci identified in the current study. Four of the 36 MTAs 
found on this chromosome have previously been associ-
ated to other wheat diseases: snp_BE442716B_Ta_2_1 
and wsnp_Ex_rep_c69266_68192766 with stripe rust 
[47], wsnp_Ex_c38116_45719983 with Fusarium head 

blight [48], and BS00070139_51 with crown rot resist-
ance [49].

On chromosomes 3A, 3B, 4A, 4B, and 5B, the addi-
tional six QTLs containing 10 MTAs were discovered. 
The marker Tdurum_contig777_260 (IWB73429) des-
ignated as EWYP3A QTL was adjacent to the all-stage 
resistance gene Sr27 which is transferred from Secale 
cereale and Sr35 gene which is transferred from Triti-
cum monococcum [32]. Because EWYP3A is so close 
to the Sr27 gene area, Sr27 is most likely the underly-
ing gene for this region. On the short arm of chromo-
some 3B, Sr2 came from Triticum dicoccum and Sr12 
originated from Triticum turgidum ssp. were cataloged 
previously [32]. On this chromosomal, we discovered 
the EWYP3B.1 QTL, which consists of three markers 
(Tdurum_contig12899_342, Excalibur_c20277_483, and 
Tdurum_contig12008_803). The nearest Sr gene to these 
markers was the Sr2 gene [30, 31]. This Sr2 gene has been 
extensively used in breeding as a source of durable and 
broad-spectrum adult plant resistance. Individual geno-
types carrying the favorable allele of these SNP mark-
ers have shown an apparent difference in the CI score 
(Additional file 1). On chromosome 5B, the SNP marker 
RAC875_c30011_426 (IWB56412) explained 5.7% of the 
total phenotypic variation. This marker is found near the 
chromosome region previously discovered the Sr56 gene 
that confers the APR to wheat stem rust [32, 33]. To the 
best of our knowledge, the other three QTLs, EWYP3B.2, 
EWYP4A, and EWYP4B, which were found on chro-
mosomes 3B, 4A, and 4B, respectively, have never been 
reported and could potentially be novel QTL sources for 
stem rust resistance breeding programs.

Conclusions
This study characterized the genetic diversity of elite 
ICARDA breeding lines and performed GWAS based 
on the evaluation of field stem rust. As a result, substan-
tial genetic variability and field disease response to Pgt 
was observed among the lines. The study detected sev-
eral potentially novel loci associated with Pgt resistance. 
These markers could provide useful genetic information 
to unlock the genetic basis of resistance to Pgt in wheat. 
Furthermore, the result will accelerate the introgression 
of identified resistance QTLs in the wheat breeding pro-
gram through marker-assisted introgression. The identi-
fied resistant lines could also be used as crossing parents 
in stem rust-resistant breeding programs.

(See figure on next page.)
Fig. 5 Scatterplots showing genome-wide linkage disequilibrium (LD) decays based on 15 K genotyping results in 245 wheat breeding lines. R2 
as a function of genetic distance (cM) between pairs of SNP markers estimated for A, B, and D sub-genomes. (A) LD for A sub-genome; (B) LD of B 
sub-genome; (C) LD of D sub-genomes. The LOESS representing the decay of R2along genetic distance is illustrated for each genome. LD critical 
threshold estimated from LD distribution of pairs of unlinked SNP markers is indicated by the dashed horizontal red line
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Fig. 5 (See legend on previous page.)



Page 9 of 15Shewabez et al. BMC Genomic Data           (2022) 23:11  

Ta
bl

e 
3 

Li
st

s 
of

 Q
TL

s 
id

en
tifi

ed
 fo

r a
du

lt 
pl

an
t r

es
is

ta
nc

e 
(A

PR
) t

o 
w

he
at

 s
te

m
 ru

st

Q
TL

s
SN

Ps
M

ar
ke

rs
 N

am
e

A
lle

le
s

Ch
ra

Po
sb

Po
sc

M
A

F
–l

og
10

P
R2

FD
Rd

Sr
 g

en
es

Re
fe

re
nc

es

EW
YP

1B
.1

IW
A

64
89

.1
w

sn
p_

Ku
_c

13
22

9_
21

14
27

92
T/

C
1B

30
.3

4
un

kn
ow

n
0.

21
34

39
4.

39
81

46
7.

14
0.

01
92

Sr
31

M
et

tin
 e

t a
l., 

19
73

 [2
7]

; Z
el

le
r, 

19
73

 [2
8]

IW
B2

95
08

Ex
ca

lib
ur

_c
95

32
7_

51
A

/G
1B

43
.8

6
9.

37
98

6
0.

41
89

72
3.

00
01

82
5.

91
0.

02
65

EW
YP

1B
.2

IW
B2

94
75

Ex
ca

lib
ur

_c
94

75
6_

54
0

T/
C

1B
57

.6
un

kn
ow

n
0.

41
50

2
3.

39
87

88
6.

63
0.

01
63

ne
w

IW
B1

56
9

Bo
bW

hi
te

_c
22

26
6_

31
5

C
/T

1B
60

.6
2

32
9.

48
96

8
0.

21
34

39
4.

17
83

1
8.

16
0.

00
50

IW
B4

32
58

Ku
kr

i_
c2

61
68

_4
23

C
/A

1B
60

.6
2

1.
41

77
58

0.
46

24
51

3.
07

20
4

6.
06

0.
01

71

EW
YP

1B
.3

IW
B2

34
46

Ex
ca

lib
ur

_c
20

22
8_

13
5

A
/G

1B
64

.1
30

5.
27

01
0.

09
48

62
3.

71
74

46
7.

27
0.

01
30

ne
w

IW
B5

46
43

RA
C

87
5_

c1
82

82
_1

39
0

T/
C

1B
64

.1
un

kn
ow

n
0.

09
09

09
3.

67
64

59
7.

15
0.

01
71

IW
A

55
92

w
sn

p_
Ex

_r
ep

_c
69

26
6_

68
19

27
66

T/
C

1B
64

.1
29

9.
97

78
5

0.
09

48
62

3.
66

80
26

7.
13

0.
01

30

IW
B6

40
5

BS
00

01
14

50
_5

1
T/

C
1B

64
.1

31
8.

23
31

8
0.

13
83

4
3.

47
31

83
6.

74
0.

00
80

IW
A

13
1

w
sn

p_
BE

44
35

31
B_

Ta
_1

_1
C

/T
1B

64
.3

2
15

6.
68

75
1

0.
11

46
25

3.
49

04
35

6.
77

0.
02

31

IW
B4

86
89

Ku
kr

i_
re

p_
c1

01
79

9_
95

C
/A

1B
64

.4
6

un
kn

ow
n

0.
11

46
25

3.
49

04
35

6.
77

0.
02

31

IW
A

36
31

w
sn

p_
Ex

_c
38

11
6_

45
71

99
83

C
/T

1B
64

.8
9

34
0.

37
29

6
0.

07
90

51
3.

95
77

79
7.

72
0.

07
75

IW
B5

15
49

Ra
_c

23
83

9_
88

4
T/

C
1B

65
.4

2
36

7.
44

01
1

0.
14

62
45

3.
61

40
9

7.
02

0.
00

80

IW
B3

17
32

G
EN

E-
01

93
_1

97
A

/G
1B

65
.4

2
36

7.
44

09
5

0.
14

62
45

3.
47

19
58

6.
74

0.
00

80

IW
A

68
90

w
sn

p_
Ku

_c
30

98
2_

40
76

52
54

T/
G

1B
66

.0
7

33
6.

20
98

8
0.

07
50

99
4.

08
15

55
7.

97
0.

18
50

IW
B5

80
51

RA
C

87
5_

c4
45

75
_5

61
C

/T
1B

66
.0

7
32

5.
79

90
1

0.
07

50
99

3.
97

38
75

8.
40

0.
02

66

IW
B4

61
Bo

bW
hi

te
_c

13
18

_6
91

T/
C

1B
66

.7
3

38
7.

64
46

4
0.

15
01

98
3.

61
84

88
7.

03
0.

00
80

IW
B3

77
20

JD
_c

64
60

0_
28

1
G

/A
1B

67
.1

4
40

9.
62

80
5

0.
89

32
81

3.
71

81
49

7.
48

0.
02

08

IW
A

10
6

w
sn

p_
BE

44
27

16
B_

Ta
_2

_1
T/

G
1B

67
.1

4
40

3,
15

6,
22

1
0.

10
27

67
3.

67
97

5
7.

15
0.

02
08

IW
B3

83
94

Ku
_c

13
51

5_
17

1
C

/T
1B

67
.1

4
un

kn
ow

n
0.

10
27

67
3.

67
97

5
7.

15
0.

02
08

IW
B3

58
71

IA
C

X2
70

1
C

/T
1B

67
.3

8
41

3.
08

88
6

0.
09

88
14

3.
79

57
99

7.
43

0.
02

08

IW
B1

04
44

BS
00

07
01

39
_5

1
A

/C
1B

68
.0

4
41

8.
16

24
6

0.
15

01
98

3.
61

80
55

7.
03

0.
00

80

IW
B2

78
52

Ex
ca

lib
ur

_c
59

01
6_

83
9

A
/G

1B
68

.0
4

42
6.

07
28

8
0.

15
01

98
3.

61
80

55
7.

03
0.

00
80

IW
B5

67
78

RA
C

87
5_

c3
28

94
_1

03
8

C
/T

1B
68

.0
4

un
kn

ow
n

0.
15

01
98

3.
35

43
13

8.
83

0.
00

80

IW
B5

93
27

RA
C

87
5_

c5
79

6_
42

4
A

/G
1B

68
.0

4
IW

B5
93

27
0.

15
01

98
3.

61
80

55
7.

03
0.

00
80

IW
B8

14
8

BS
00

03
89

29
_5

1
T/

C
1B

68
.0

4
41

7.
85

67
4

0.
15

01
98

3.
61

80
55

7.
03

0.
00

80

EW
YP

1B
.4

IW
B7

41
45

tp
lb

00
23

b1
4_

70
4

G
:T

1B
70

.0
8

43
8.

28
96

0.
33

99
21

3.
35

71
4

6.
59

0.
02

45
ne

w

IW
B4

75
66

Ku
kr

i_
c7

37
34

_1
75

C
/T

1B
76

.8
9

53
2,

56
5,

45
3

0.
21

34
39

4.
26

81
53

8.
37

0.
02

82

IW
B6

04
33

RA
C

87
5_

c7
67

4_
63

4
G

/A
1B

76
.8

9
53

2.
56

54
5

0.
27

66
8

3.
54

56
13

7.
40

0.
02

82

IW
B6

50
4

BS
00

01
19

73
_5

1
T/

G
1B

76
.8

9
53

1,
85

5,
67

0
0.

28
06

32
3.

48
53

33
6.

78
0.

02
82

IW
A

77
5

w
sn

p_
C

A
P1

1_
c5

43
_3

75
40

3
A

/G
1B

76
.8

9
54

2.
43

16
3

0.
21

73
91

3.
04

46
83

5.
89

0.
02

82

IW
A

52
28

w
sn

p_
Ex

_r
ep

_c
66

38
9_

64
58

89
92

A
/G

1B
79

.7
7

56
1.

70
45

8
0.

11
06

72
3.

73
14

92
7.

28
0.

00
80

IW
B7

49
00

tp
lb

00
48

b1
0_

13
65

A
/G

1B
79

.7
7

55
2.

53
32

0.
11

06
72

3.
73

14
92

7.
28

0.
00

80



Page 10 of 15Shewabez et al. BMC Genomic Data           (2022) 23:11 

Ta
bl

e 
3 

(c
on

tin
ue

d)

Q
TL

s
SN

Ps
M

ar
ke

rs
 N

am
e

A
lle

le
s

Ch
ra

Po
sb

Po
sc

M
A

F
–l

og
10

P
R2

FD
Rd

Sr
 g

en
es

Re
fe

re
nc

es

EW
YP

1B
.5

IW
B1

06
21

BS
00

07
27

91
_5

1
A

/G
1B

10
5.

83
62

9.
26

29
9

0.
27

66
8

3.
77

85
86

7.
61

0.
00

80
ne

w

IW
B7

03
80

Td
ur

um
_c

on
tig

32
77

5_
78

A
/G

1B
11

2.
07

un
kn

ow
n

0.
33

59
68

3.
73

20
07

7.
26

0.
00

80

IW
B6

61
98

Td
ur

um
_c

on
tig

10
03

6_
97

7
C

/A
1B

11
4.

13
63

4.
65

36
0.

09
48

62
3.

49
17

8
6.

81
0.

00
80

EW
YP

3A
IW

B7
34

29
Td

ur
um

_c
on

tig
77

7_
26

0
G

/A
3A

20
.7

4
10

2.
20

74
9

0.
33

99
21

3.
60

90
65

7.
12

0.
00

80
Sr

27
M

cI
nt

os
h 

et
 a

l., 
19

95
 [2

9]

EW
YP

3B
.1

IW
B6

77
69

Td
ur

um
_c

on
tig

12
89

9_
34

2
T/

C
3B

9.
7

5.
58

58
37

0.
37

94
47

3.
48

42
32

6.
90

0.
02

10
Sr

2
A

us
em

us
 e

t a
l., 

19
46

 [3
0]

; K
no

tt
, 1

96
8 

[3
1]

IW
B2

34
57

Ex
ca

lib
ur

_c
20

27
7_

48
3

A
/G

3B
9.

7
5.

58
57

2
0.

37
15

42
3.

04
20

77
5.

88
0.

02
10

IW
B6

73
89

Td
ur

um
_c

on
tig

12
00

8_
80

3
T/

C
3B

9.
7

5.
58

46
56

0.
39

52
57

3.
01

65
18

5.
83

0.
02

10

EW
YP

3B
.2

IW
B7

52
22

tp
lb

00
59

m
03

_6
22

C
/T

3B
20

.1
4

7.
37

36
15

0.
43

47
83

3.
02

21
07

5.
95

0.
02

08
ne

w

EW
YP

4A
IW

B7
26

64
Td

ur
um

_c
on

tig
59

60
3_

74
G

/A
4A

26
.5

9.
92

93
9

0.
15

01
98

3.
24

04
53

6.
40

0.
26

0
ne

w

EW
YP

4B
IW

B2
47

98
Ex

ca
lib

ur
_c

29
12

7_
55

2
G

/A
4B

64
.5

8
23

2.
88

03
3

0.
09

48
62

3.
73

03
7

7.
26

0.
02

08
ne

w

IW
B4

81
89

Ku
kr

i_
c8

97
3_

19
86

T/
C

4B
62

.2
2

U
nk

no
w

n
0.

09
88

14
3.

12
64

12
4.

76
0.

07
3

IW
B5

37
58

RA
C

87
5_

c1
36

39
_2

15
9

T/
C

4B
62

.9
2

27
2.

17
45

9
0.

09
88

14
3.

12
64

12
4.

76
0.

01
90

EW
YP

5B
IW

B5
64

12
RA

C
87

5_
c3

00
11

_4
26

C
/T

5B
10

4.
55

57
1.

47
52

1
7.

08
54

8
2.

99
14

5.
77

0.
02

10
Sr

56
Pa

rk
 2

01
6 

[3
2]

; Y
u 

et
 a

l., 
20

14
 b

[3
3]

Q
TL

s Q
ua

nt
ita

tiv
e 

tr
ai

t l
oc

i, 
SN

Ps
 S

in
gl

e 
nu

cl
eo

tid
e 

po
ly

m
or

ph
is

m
, C

hr
a  C

hr
om

os
om

e 
po

si
tio

n,
 P

os
b  M

ar
ke

r’s
 g

en
et

ic
 p

os
iti

on
 m

ap
pe

d 
in

 th
e 

w
he

at
 9

0K
SN

P 
co

ns
en

su
s 

m
ap

 [3
4]

 in
 c

en
tim

or
ga

ns
 (c

M
); 

 Po
sc , m

ar
ke

r’s
 

ph
ys

ic
al

 p
os

iti
on

 p
ro

du
ce

d 
by

 th
e 

In
te

rn
at

io
na

l W
he

at
 G

en
om

e 
Se

qu
en

ci
ng

 C
on

so
rt

iu
m

 (I
W

G
SC

 R
ef

Se
q 

v1
.0

 )[
35

] i
n 

m
eg

ab
as

e 
pa

irs
 (M

bp
); 

 FD
Rd , T

he
 fa

ls
e-

di
sc

ov
er

y 
ra

te
 a

dj
us

te
d 

P-
va

lu
es

; (
M

A
F)

, m
in

or
 a

lle
le

 fr
eq

ue
nc

y;
 

 R2 , p
he

no
ty

pi
c 

va
ria

nc
e 

ex
pl

ai
ne

d 
by

 th
e 

m
ar

ke
rs



Page 11 of 15Shewabez et al. BMC Genomic Data           (2022) 23:11  

Materials and methods
Plant materials, field stem rust trials, and disease 
pathotyping
A set of 245 elite breeding lines was obtained from the 
International Center for Agricultural Research in the 
Dry Areas (ICARDA) shuttle breeding program. Field 
screening was conducted in Ethiopia for two consecutive 
cropping seasons (2018 and 2019) at the Debre Zeit Agri-
cultural Research Center (DARC). DARC is located at 08° 
44′ N latitude and 38° 58′ E longitude and 1900 m.a.s.l with 
19 °C annual average temperature and 851 mm rainfall. The 
experiment was conducted using an augmented design, 
including five local cultivars (Digelu, Kubssa, Hidasse, 
Honqolo, and Ogolcho) as checks. Each line was planted in 
a 1 m long single row and the distance between rows was 
30 cm. The border of each block was surrounded by sus-
ceptible local spreader wheat varieties to promote natural 
stem rust infection.

Stem rust phenotyping was conducted based on disease 
severity (DS) and infection response (IR) under natural dis-
ease pressure [50]. Both parameters were recorded three 
times for each line in each year. The highest recorded value 

was then taken for the GWAS analysis after calculating the 
coefficient of infection (CI) from the two parameters (i.e. 
DS and IR).

The CI was calculated by multiplying the DS by a con-
stant value of IR recorded according to Yu et  al. (2011). 
IR values were recorded with the following scale: immune 
(I) = 0.0, R (resistant) = 0.2, resistant to moderately resist-
ant (RMR) = 0.3, moderately resistant (MR) = 0.4, mod-
erately resistant to moderately susceptible (MRMS) = 0.6, 
moderately susceptible (MS) = 0.8, moderately susceptible 
to susceptible (MSS) = 0.9 and susceptible (S) = 1.0.

Statistical analysis of phenotypic data
Analysis of variance (ANOVA) was performed for DS, 
IR, and CI using the nlme package in the R 4.0.2 environ-
ment (Pinheiro et al., 2020) fitting the value of DS, IR, and 
CI as a function of lines, years, and a combination of lines 
and years. To determine the consistency of DS, IR, and 
CI, Pearson correlation coefficients between seasons were 
calculated.

Broad-sense heritability (H 2) was calculated using the 
following formula:

Fig. 6 The linkage disequilibrium blocks formed by the 36 significantly associated SNPs with APR to stem rust on chromosome 1B
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Fig. 7 GWAS results of the Manhattan plot along with the 21 chromosomes showing significantly associated markers with adult plant stem rust 
resistance. The position of each marker was based on the wheat consensus SNP map [34]

Fig. 8 Q-Q plot for stem rust resistance in a panel of 245 wheat breeding lines using the MLM model. The plots show the observed p-values (p) for 
the association between CI and each tested marker expressed as –log 10 (P-value) of p (y-axis) plotted against –log10 P of the expected p-values 
(x-axis) under the null hypothesis of no association for the analyses
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H 2= σ
2 G

σ
2 G+(σ2GXE)/n+( σ

2 error)/n

Where σ2 G is the genotypic variance, σ2 E is the environ-
mental variance, σ2

GXE is the genotype by environment 
interaction variance, σ2 error is the residual error variance 
and n is the number of years.

To reduce false-positive associations, best linear unbi-
ased predictors (BLUPs) for CI were calculated using a 
mixed model in lme4 package implemented in R environ-
ment [51] according to the following model where y is the 
response variable:

Population structure and genetic diversity
The optimal sub-populations of the panel were esti-
mated based on three different approaches. The Bayes-
ian model-based population structure was estimated 
from 100 unlinked SNP markers located at least 10 cM 
apart across the genome using STRU CTU RE  2.3.1 soft-
ware [52, 53]. To execute this, three independent runs 
were performed for each hypothetical K value run from 
2 to 15 with the length of the burn-in period of 10,000 
steps followed by 100,000 Monte Carlo Markov Chain 
(MCMC). The results obtained from this procedure were 
used in a web-based informatics tool namely, “Struc-
ture Harvester” [54] to define the optimal K value, based 
on ∆K method Evanno, 2005 [55]. Each genotype was 
assigned to one subpopulation based on its member-
ship probability. The second approach used to determine 
the optimal subpopulation was based on a marker-based 
kinship matrix (K matrix) on a scaled identity-by-state 
method using the whole set of SNP markers from TAS-
SEL 5 software [56]. Finally, the principal components 
analysis (PCA) of genetic relatedness was performed with 
the same software and added to the regression model as 
a covariant.

Genetic diversity was estimated based on polymorphic 
information content (PIC), heterozygosity, and Nei’s gene 
diversity using the whole set of SNP markers from Pow-
erMarker 3.25 software [57]. Phylogenetic analysis based 
on distance-based neighbor-joining method was calcu-
lated with TASSEL 5 software and visualized through 
web-based program iTOL (v 4.3.2) [58].

Genotyping, linkage disequilibrium, and genome‑wide 
association analysis
DNA extraction of lines was carried out on one-week-old 
seedlings following the protocol described by Allen et al. 
(2006) [59] using Cetyeltrimethylammonium bromide 

y = lmer
(

Trait ∼
(

1|Genetype
)

+ (1|Year)
)

(CTAB). Genotyping was performed by Illumina iSelect 
15 K single nucleotide polymorphism (SNP) wheat array 
and called by GenomeStudio V2011.1 software. The 
resulting 13,006 SNPs were further screened using those 
only minor allelic frequency (MAF) > 5%, and missing 
data percentage of < 10%. Five lines were excluded as a 
result of this screening. Finally, 9523 quality SNP markers 
were generated from 245 lines that were used for further 
analysis.

The resulting SNP data were subjected to linkage dis-
equilibrium (LD) analysis as squared allelic frequency 
correlations  (R2) between each pair implemented in 
TASSEL v5.2 and GAPIT (Genomic Association and 
Prediction Integrated Tool) R package [60]. The criti-
cal  R2 value (where the LD is due to the physical link-
age) was determined by taking the 95% of  R2 data 
of unlinked markers as the threshold, according to 
Breseghello and Sorrells (2006) [61].

Marker-trait association analysis (MTAs) between 
the BLUP value of CI and SNPs markers were analyzed 
using a mixed linear model (MLM) in TASSEL 5.2 soft-
ware. Using the formula: y = Xα + Qδ + Kμ + e; where 
y = phenotypic values,  X is SNP marker genotypes, 
α is a vector containing fixed effects as a result of the 
genotype, Q is population structure as PCA, δ is a vec-
tor containing fixed effects resulting from population 
structure, K is the relative kinship matrix, μ is a vec-
tor of random additive genetic effects and e is a vector 
of residuals. Marker trait associations were declared 
significant at a threshold value of –log10 (p) ≥ 3 (corre-
sponding p value ≤ 0.001) [62].

Abbreviations
ANOVA: Analysis of variance; BLUP: Best linear unbiased prediction; CI: Coef-
ficient of infection; DARC : Debre Zeit Agricultural Research Center; GWAS: 
Genome-wide association study; DS: Disease severity; ICARDA: International 
Center for Agricultural Research in the Dry Areas; IR: Infection response; LD: 
Linkage disequilibrium; MAF: Minor allele frequency; MAS: Marker-assisted 
selection; MCMC: Markov chain Monte Carlo; MLM: Mixed Linear Model; MTA: 
Marker-trait association; PC: Principal components; PCA: Principal component 
analysis; Pgt: Wheat stem rust fungus Puccinia graminis; PIC: Polymorphism 
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Quantitative trait locus; SNP: Single nucleotide polymorphism.
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