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Abstract

Background: Upshaw–Schulman syndrome (USS) is an autosomal recessive disease characterized by thrombotic
microangiopathies caused by pathogenic variants in ADAMTS13. We aimed to (1) curate the ADAMTS13 gene
pathogenic variant dataset and (2) estimate the carrier frequency and genetic prevalence of USS using Genome
Aggregation Database (gnomAD) data.

Methods: Studies were comprehensively retrieved. All previously reported pathogenic ADAMTS13 variants were
compiled and annotated with gnomAD allele frequencies. The pooled global and population-specific carrier
frequencies and genetic prevalence of USS were calculated using the Hardy-Weinberg equation.

Results: We mined reported disease-causing variants that were present in the gnomAD v2.1.1, filtered by allele
frequency. The pathogenicity of variants was classified according to the American College of Medical Genetics and
Genomics criteria. The genetic prevalence and carrier frequency of USS were 0.43 per 1 million (95% CI: [0.36, 0.55])
and 1.31 per 1 thousand population, respectively. When the novel pathogenic/likely pathogenic variants were
included, the genetic prevalence and carrier frequency were 1.1 per 1 million (95% CI: [0.89, 1.37]) and 2.1 per 1
thousand population, respectively.

Conclusions: The genetic prevalence and carrier frequency of USS were within the ranges of previous estimates.

Keywords: Upshaw–Schulman syndrome (USS), Thrombotic thrombocytopenic purpura (TTP), ADAMTS13, Genetic
prevalence, Pathogenicity, Carrier frequency

Background
Upshaw–Schulman syndrome (USS) is an ultrarare but
life-threatening autosomal recessive disease character-
ized by the absence or a severe deficiency of plasma von
Willebrand factor (vWF)-cleaving protease; this results
in the abnormal presence of ultralarge vWF multimers
and subsequent platelet adhesion to these vWF multi-
mers, leading to the formation of circulating platelet
microthrombi [1–3]. The spectrum of clinical pheno-
types in USS is broad. Disease onset can occur in the

neonatal period, childhood, adulthood or late life, with a
notable peak in women during pregnancy. Recurrent
attacks of microvascular thrombosis with associated
thrombocytopenia, purpura and microangiopathic
haemolytic anaemia (MAHA) lead to ischaemic damage
to end organs in the kidneys, heart, or brain. Diagnosis
is based on a pentad of classic clinical characteristics:
thrombocytopenia, haemolytic anaemia, renal failure,
fever, and neurologic deficits [4, 5]. An ADAMTS13 ac-
tivity assay combined with genetic testing distinguishes
USS from acquired TTP. Treatment of USS involves the
replacement of ADAMTS13 by fresh-frozen plasma
(FFP) infusion.
USS is the result of homozygous or compound heterozy-

gous variants in the ADAMTS13 gene. The ADAMTS13
gene spans 29 exons and ~ 37 kb, is located at chromosome
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9q34 and encodes a protein with 1427 amino acids [6]. To
date, more than 200 ADAMTS13 disease-causing
mutations in all ADAMTS13 exons have been identified in
patients with USS since 2001 [7–12].
USS is extremely rare, and its precise prevalence is

uncertain. Most estimates suggest a prevalence of 0.5 to
2 cases per 1 million population. Previously reported
prevalence rates of USS have been extremely heteroge-
neous; in central Norway, the prevalence was 16.7 per 1
million population, whereas in all of Norway, it was 3.1
per 1 million population, [13] which was 18 times and
3.4 times higher than the prevalence of USS in Japan (1
per 1.1 million population), [14] respectively. We hy-
pothesized that the prevalence of USS would vary among
different populations or ethnicities.
Therefore, we aimed to estimate the prevalence of USS

across ethnicities from the current and largest publicly
available Genome Aggregation Database (gnomAD)
exome dataset using validated protocols [15, 16]. In
addition, we aimed to generate an evidence-based data-
set of known USS pathogenic variants via data mining.
We also aimed to generate a machine learning training
dataset for pathogenicity interpretation of variants.

Methods
Identification of known disease-causing variants
Literature was comprehensively reviewed to identify all
known disease-causing variants in the ADAMTS13 gene
(see the supplementary materials for search terms,
protocols, scripts, full paper list and full variant list).
Two independent authors screened titles and ab-

stracts according to inclusion and exclusion criteria:
original case reports reporting disease-causing variants
within the ADAMTS13 gene were included, and
variants in full-text tables, figures or supplementary
material figures and tables were extracted. Non-
English-language articles, reviews, comments, edito-
rials, etc.; nonoriginal papers; and in vitro and animal
model studies were excluded.
All papers were saved in the Medline format and

stored in the NoSQL database as MongoDB documents
using NCBI Entrez Programming Utilities [17] (E-utilities)
with the Python package biopython [18] and pymongo
implementation.
The HGMD [19] (http://www.hgmd.cf.ac.uk/ac/index.

php), Ensembl Variation [20], VarSome [21] (https://
varsome.com/), ClinVar [22] (https://www.ncbi.nlm.nih.
gov/clinvar/) and Genomenon Mastermind [23] (https://
mastermind.genomenon.com/) databases were also
searched to identify additional ADAMTS13 variants with
reported pathogenicity.
A list of all single-nucleotide variants (SNVs) for

ADAMTS13 was compiled using Ensembl Variant
Simulator [24].

Identification of major functional variants
The gnomAD [25] was searched for pathogenic variants
that had not yet been reported in patients, and we exam-
ined major all-cause functional or structural changes
(frameshifts, stop codons, start codons, splice donors
and splice acceptors).

Annotation of variants with allele frequency and
functional predictions
Raw variants were identified and converted to Human
Genome Variation Society (HGVS) nomenclature [26]
using Mutalyzer [27] and Ensembl VEP Variant Recoder
REST API with Python implementation. Ensembl variant
effect predictor (VEP) [28] was used to annotate variants
and make in silico predictions of pathogenicity with
PROVEAN/PolyPhen/MutationTaster. gnomAD minor
allele frequency (MAF) data were added to each variant
from the gnomAD website.

Disease-causing variant classification
The pathogenicity of variants was interpreted using a
pipeline proposed by Zhang et al. [29] Disease-causing
variants with gnomAD allele frequencies were classified
using the American College of Medical Genetics and
Genomics (ACMG) and the Association for Molecular
Pathology (AMP) criteria [30] with the ClinGen Patho-
genicity Calculator [31]. Pathogenic/likely pathogenic
variants were included in the prevalence calculation.

Maximum allele frequency filtering
All variants with gnomAD allele frequency data were fil-
tered using a method defined by Whiffin et al. [32]
Prevalence was calculated from estimates from the Japa-
nese [14] population and Orphanet database as one case
per 1 million population. The maximum allelic contribu-
tion was set at 24.4% based on an estimate of c.4143dup
(p. Glu1382Argfs*6) according to International Heredi-
tary Thrombotic Thrombocytopenic Purpura Registry
[7] data. The maximum genetic contribution was set to
1 based on cohorts from the UK [8], France [9], and
Germany [10] and International Hereditary Thrombotic
Thrombocytopenic Purpura Registry [7] data. The pene-
trance was set at 50%, as suggested by Whiffin. The
maximum credible allele frequency in the population
was calculated as 0.035% by Whiffin’s defined equation.
The maximum allele frequencies for the population

were directly downloaded from the gnomAD website
(https://gnomad.broadinstitute.org/). Variants with a
maximum allele frequency greater than the maximum
credible allele frequency were excluded.

Prevalence calculation
Allele frequencies of pathogenic/likely pathogenic
variants were extracted from the ADAMTS13 variant
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dataset and pooled, and the prevalence of USS was cal-
culated using the Hardy-Weinberg equation.
The 95% confidence interval (95% CI) for the binomial

proportion was calculated using the Wilson score with
the Python scientific computing package statsmodels
and NumPy implementation. Graphics were plotted
using the R packages ggplot2 and VennDiagram [33].

Results
Identification of ADAMTS13 variants
Comprehensive searching for USS disease-causing vari-
ants resulted in the identification of 1249 articles, of
which 126 studies were considered eligible according to
the exclusion and inclusion criteria. From these studies,
280 disease-causing variants were identified, of which
239 variants were classified as “pathogenic” or “likely
pathogenic” according to the ACMG criteria. Mining the
ClinVar database resulted in the identification of an add-
itional 6 disease-causing variants (pathogenic and likely
pathogenic). A total of 245 known disease-causing vari-
ants were recorded. gnomAD allele frequencies were
available for 59/245 (24.1%) disease-causing variants. All
disease-causing variant pipelines and counts are shown
in Fig. 1, and the associated data are shown in the sup-
plementary data [see Additional files 1, 2, 3, 4, 5, 6, 7, 8,
9, and 10].

Frequencies of reported USS pathogenic/likely
pathogenic variants
Of the 59 reported disease-causing variants with gno-
mAD allele frequency data, 57 remained after frequency
filtering. Pooling of the allele frequencies of these vari-
ants resulted in a global allele frequency of 0.0006,
which is equivalent to a prevalence of 0.43 per 1,000,000
population (95% confidence interval: [0.36, 0.55]). Five
major populations had a similar prevalence of less than
1 per 1 million population (Fig. 2 and Table 1).

Functional pathogenic variants
To estimate the genetic prevalence of USS, including
disease-causing variants that had not yet been reported
in patients, we searched all ADAMTS13 variants in the
gnomAD database that caused loss-of-function (LoF)
mutations (frameshift, nonsense, splice acceptor and
splice donor variants). After filtering, 86 variants were
identified in the gnomAD exome v2.1.1 database, and 63
variants were novel. When the novel disease-causing
variants were combined with the reported pathogenic
variants, and the global allele frequency of USS was
0.001, equivalent to 1.1 per 1,000,000 population (95%
confidence interval: [0.89, 1.37]). The African population
had the highest prevalence, at 5.64 per 1,000,000 popula-
tion (95% CI: [3.01, 10.56]), and the other four major

populations had a prevalence of greater than 1 per
1,000,000 population.
The most common functional mutation was a mis-

sense mutation, accounting for 40.6% of all pathogenic
and likely pathogenic variants and contributing 42.9% of
the total allele frequency. Frameshift and nonsense mu-
tations were the second most common mutations.

Discussion
We conducted the first systematic study to estimate,
without bias, the genetic prevalence of USS in the global
and five major populations. Our result was within the
range of previous estimates. Additionally, we manually
compiled all ADAMTS13 disease-causing variants
and conducted an evidence-based interpretation of
pathogenicity.
USS accounts for < 5% of TTP cases and is caused

mostly by biallelic (compound heterozygote or homozy-
gote) mutations in the ADAMTS13 gene or, in rare
cases, by monoallelic ADAMTS13 mutations associated
with single-nucleotide polymorphisms (SNPs). USS has a
heterogeneous inheritance pattern. Previous estimates of
USS prevalence were variable, which may be largely
accounted for by differences in populations. Using the
current largest population genome dataset in the
gnomAD v2.1.1 (125,748 human exomes and 15,708 ge-
nomes), we calculated the global genetic prevalence of
USS to be 0.43 to 1.1 per 1 million population and the
carrier frequency to be 1 to 2 per 1 thousand population.
We highlighted that the African population has the
highest prevalence of USS, and the other four major
populations have similar prevalence rates and carrier
frequencies.
USS was not on the first Rare Diseases List released by

the Chinese government [34]. The prevalence of USS in
the Chinese population has not been estimated [35]. We
have demonstrated the power and limitations of popula-
tion genome datasets to calculate the genetic prevalence
and carrier frequency of USS. The gnomAD groups East
Asian populations into three categories: Korean, Japanese
and other East Asians. Other population genome datasets,
the 100 k Chinese People Genome Project and GenomeA-
sia 100 K Project will fill this gap [36]. We will estimate
the prevalence of USS in Asian populations and Chinese
populations with 100 k genome datasets as a next step.
Two variants, c.3178C > T (p. Arg1060Trp) and

c.559G > C (p. Asp187His), which were classified as
pathogenic and likely pathogenic, respectively, were fil-
tered out by Whiffin’s method; they were “too common”
to be causative factors for USS based on our set value
for maximum allelic contribution and prevalence.
Whiffin’s method was not optimal but more persuasive
than an arbitrary MAF cut-off threshold of 0.05 (ACMG
benign stand-alone criteria).
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This study was based on assumptions of the
Hardy-Weinberg equation. However, consanguine
marriage is popular in specific subpopulations (such
as some populations in Africa and South Asia). In
these populations, the genetic prevalence might be
higher than the calculated values. In addition, only

one genetic prevalence calculation algorithm was
used. Other algorithms, such as product-based
algorithms for allele matrices and Bayesian-based
algorithms, have been used to calculate autosomal
recessive inherited retinal diseases [37] and limb-girdle
muscular dystrophy [38], respectively.

Fig. 1 ADAMTS13 gene disease-causing variants and gnomAD allele frequencies. a flow chart of identification and classification of ADAMTS13 disease-
causing variants. ADAMTS13 variants were extracted from PubMed & Scopus citations. ADAMTS13 missense, nonsense, frameshift, inframe, splice
acceptor / donor variants were collected from HGMD Public (2016 version), ClinVar and gnomAD database. b Venn diagram of mined PubMed &
Scopus, HGMD, ClinVar and gnomAD variants. c Venn diagram of mined PubMed & Scopus, HGMD, ClinVar and gnomAD disease-causing variants
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The number of ADAMTS13 classified variants in
the ClinVar database was far less than the number of
reported variants obtained via document retrieval and
data mining, but the pathogenicity prediction tool
used the ClinVar dataset as the training set. The
Clinical Genome (ClinGen) allele registry can be used

for variant evaluation and assertion. The dbNSFP
database, which provides comprehensive functional
prediction and annotation for human nonsynonymous
and splice-site SNVs, is a valuable resource for
training set construction for pathogenicity prediction
of novel variants [39].

a b

c d

Fig. 2 genetic prevalence and carrier frequency of USS. a, b USS carrier frequency and genetic prevalence estimated from gnomAD allele
frequencies. c, d molecular consequence of all known and novel disease-causing variants. c Pie chart of the number of variants group by each
molecular consequence. d Pie chart of the proportion of the total allele frequency group by molecular consequence

Table 1 Allele frequency database prevalence and carrier frequency calculations

prevalence carrier frequency

known and novel variants known variants known and novel variants known variants

total 1.10152 (0.890567, 1.370326) 0.428407 (0.3357, 0.554897) 0.002097 0.001308

AFR 5.639105 (3.010004, 10.55961) 0.944298 (0.355737, 2.505441) 0.004738 0.001942

AMR 1.482111 (0.812177, 2.704048) 0.565474 (0.263468, 1.213389) 0.002432 0.001503

ASJ 0.046311 (0.003816, 0.561623) 0 0.00043 0

EAS 1.676507 (0.755126, 3.720573) 0.781969 (0.298701, 2.046257) 0.002586 0.001767

FIN 0.00864 (0.000654, 0.114046) 0 0.000186 0

NFE 1.143383 (0.595458, 1.961721) 0.593037 (0.239053, 1.177138) 0.002136 0.001539

SAS 1.121036 (0.56517, 2.22306) 0.436036 (0.183617, 1.035195) 0.002115 0.00132

OTH 0.731709 (0.138862, 3.850784) 0.107322 (0.008125, 1.415878) 0.001709 0.000655

AFR African/African American, AMR Latino/Mixed American, ASJ Ashkenazi Jewish, EAS East Asian, FIN Finnish, NFE Non-Finnish European, SAS South Asian,
OTH Other
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Our finding of reported disease-causing variants and
predicted pathogenic variants highlight the mutational
spectrum of USS. The most common pathogenic
variants were missense variants, which were also the
most difficult to predict and evaluate for pathogenicity.
The data from this study can be used for the creation of
toolboxes for geneticists, clinicians, genetic counsellors,
and health data analysts.
In summary, the genetic prevalence of USS was

0.43 per 1 million population (95% CI: [0.36, 0.55])
for the 239 known pathogenic/likely pathogenic vari-
ants and 1.1 per 1 million population (95% CI: [0.89,
1.37]) for the 245 (239 known and 6 novel) patho-
genic/likely variants, which was calculated from the
gnomAD containing 125,748 individuals with whole-
exome sequence data and 15,708 individuals with
whole-genome sequence data. These results are within
the range of previous estimates a prevalence of 0.5 to
2 cases per million population from Kremer Hovinga
JA et al. but different from those of other previous
studies. The prevalence of USS in central Norway was
16.7 per 1 million population based on 11 cases of
USS in central Norway, which has a population of
659,621 persons, and 3.1 per 1 million population
based on 16 cases in all of Norway, which has a
population of 5.17 million. However, Kokame et al.
estimated a 6/3200 heterozygosity rate on the basis of
6 of 3200 samples, and the prevalence was 1 per 1.1
million population (6/3200 × 6/3200 × 1/4) in Japan,
which was the same as that estimated from the
Orphanet database. Furthermore, they estimated 110
USS patients in Japan based on a 0.13 billion popula-
tion. The Norway study calculated the prevalence
based on two variant allele frequencies, namely,
c.4143dup and c.3178 C > T (p. R1060W), and the
Japan study based the prevalence on seven variants.
The estimation of the USS prevalence may be biased
due to insufficient sample sizes, different ethnicities,
different lethality, different penetrance, misdiagnosis,
etc. We calculated more reliable global and
population-specific estimates for USS genetic preva-
lence and carrier frequency. These data can be used
as a training set for pathogenicity prediction of novel
variants and genetic diagnosis of USS. We also pro-
vided a validated pipeline to calculate the prevalence
of rare diseases. These datasets will be especially valu-
able for rare disease definitions in developing coun-
tries, in which epidemiological data are scarce [40].
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