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Abstract

Background: Since genes involved in the same biological modules usually present correlated expression profiles,
lots of computational methods have been proposed to identify gene functional modules based on the expression
profiles data. Recently, Sparse Singular Value Decomposition (SSVD) method has been proposed to bicluster gene
expression data to identify gene modules. However, this model can only handle the gene expression data where no
gene interaction information is integrated. Ignoring the prior gene interaction information may produce the identified
gene modules hard to be biologically interpreted.

Results: In this paper, we develop a Sparse Network-regularized SVD (SNSVD) method that integrates a prior gene
interaction network from a protein protein interaction network and gene expression data to identify underlying gene
functional modules. The results on a set of simulated data show that SNSVD is more effective than the traditional
SVD-based methods. The further experiment results on real cancer genomic data show that most co-expressed
modules are not only significantly enriched on GO/KEGG pathways, but also correspond to dense sub-networks in the
prior gene interaction network. Besides, we also use our method to identify ten differentially co-expressed
miRNA-gene modules by integrating matched miRNA and mRNA expression data of breast cancer from The Cancer
Genome Atlas (TCGA). Several important breast cancer related miRNA-gene modules are discovered.

Conclusions: All the results demonstrate that SNSVD can overcome the drawbacks of SSVD and capture more
biologically relevant functional modules by incorporating a prior gene interaction network. These identified functional
modules may provide a new perspective to understand the diagnostics, occurrence and progression of cancer.
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Background
With the rapid development of (single-cell) RNA-Seq
and microarray technologies, huge number of cancer
genomic data have been generated [1–3]. The data provide
some new opportunities to study on the gene cooper-
ative mechanisms [4–8]. Based on the hypothesis that
genes with similar functions may show similar expression
patterns, clustering techniques have been used to iden-
tify co-expressed gene sets in which genes present similar
expression patterns across all samples. However, these
traditional clustering techniques face with the limitation
that some genes can co-regulate across some samples
rather than all samples in the real biological systems [9].
Therefore, many biclustering methods [4, 10–13] are pro-
posed to discover some co-expressed gene sets in which
genes present similar expression patterns across some
samples.

Recently, several Sparse Singular Value Decomposition
(SSVD) based methods have been proposed for biclus-
tering gene expression data to discover gene functional
modules (biclusters) [14], such as ALSVD [4], L0SVD
[15], and so on. However, most of them ignore the prior
gene interaction network knowledge from a protein pro-
tein interaction (PPI) network, whereas such information
is very useful to improve biological interpretability of
discovered gene modules [16–18]. The PPI network has
been used in many biological applications for accurate
discovery or better biological interpretability [16, 19–22].
However, as far as we know, there is very little work to
incorporate the gene interaction network knowledge from
PPI network into the bi-clustering framework. To address
it, we integrate the gene network in the SSVD model for
biclustering gene expression [23].

In this paper, we develop a sparse network-regularized
SVD (SNSVD) model to identify gene functional modules
by integrating gene expression data and a prior gene inter-
action network from a PPI network (Fig. 1). To ensure the
discovered gene modules in which genes are co-expressed
and densely connected in the prior PPI network, we intro-
duce a sparse network-regularized penalty [20] in the
model. Compared with the traditional regularized penal-
ties (e.g., LASSO [24]), the sparse network-regularized
penalty can make the biclustering process tend to select
correlated and interacted genes for enhancing biological
interpretability of gene modules. We present an alternat-
ing iterative algorithm to solve the SNSVD model. We
evaluate the performance of SNSVD using a set of artifi-
cial data sets and gene expression data from the Cancer
Genome Project (CGP) [3], and compare its performance
with other representative SSVD methods. We investi-
gate the functionality of these identified modules from
multiple perspectives. The results show that SNSVD can
identify more biologically relevant gene sets and improve
their biological interpretations.

Additionally, we present a framework based on SNSVD
for analyzing matched miRNA and mRNA expres-
sion data to identify differentially co-expressed miRNA-
gene modules. Extensive results when applying onto
TCGA breast cancer data demonstrate that the identi-
fied miRNA-gene modules provide a new perspective for
diagnosis and discrimination between two status of breast
cancer.

Results
Simulation study
We evaluated the performance of SNSVD on the sim-
ulated data by comparing it with other sparse SVD
based methods including L0SVD [15], ALSVD [4] and
SCADSVD [4, 25]. Without loss of generality, we define a
rank-one true signal matrix as uvT where u and v are vec-
tors of size p × 1 and n × 1, respectively. The observed
matrix is defined as X = uvT + γ ε, where ε is a noise
matrix each element in which is randomly sampled from
a standard normal distribution and γ is a nonnegative
parameter to control the signal-to-noise ratio (SNR).

To generate the simulated data, we first generated two
sparse singular vectors u and v with p = 200, n = 100
whose first 50 elements equal to 1 (non-zeros), and the
remaining ones are zeros. Then we created a series of
observation matrices X for each γ ranging from 0.02 to
0.06 in steps of 0.005. In addition, we created a prior “PPI”
network for row variables of X, where any two nodes in
first 50 vertices are connected with probability p11 = 0.3,
and remaining ones are connected with probability p12 =
0.1. For each γ , we generated 50 different noise matrices
ε to got 50 observed matrices X for testing. The aver-
age sensitivity, specificity and accuracy of u (or v) on the
50 matrices X were calculated. Moreover, we set σ=0.5
according to 5-fold cross validation test, and forced u
and v to contain 50 non-zero elements with same spar-
sity level for each method by tuning the parameters so
that the results of different methods are comparable. The
average sensitivities, specificities and accuracies of u (or
v) with different γ were compared in Fig. 2. We found
that the performance of our proposed method (SNSVD)
is superior to that of other methods. The results illustrate
that SNSVD model can enhance the power of variable
selection by integrating the prior network knowledge.

Application to the CGP gene expression data sets
We further investigated the performance of SNSVD by
using the gene expression data with 641 cell lines includ-
ing diverse cancer types and tissues from the Cancer
Genome Project (CGP) (http://www.cancerrxgene.org/
downloads) [3], and a PPI network from the Pathway-
Commons database [26]. In total, there are 13,321 genes
and 262,462 interactions in the PPI network. The 641 cell
lines are from 16 tissues or 52 cancer types in the CGP

http://www.cancerrxgene.org/downloads
http://www.cancerrxgene.org/downloads
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Fig. 1 Overall workflow of Sparse Network-regularized Singular Value Decomposition (SNSVD). SNSVD integrates both a gene expression and a
normalized Laplacian matrix L encoding a protein-protein interaction (PPI) network to identify gene functional modules. Based on the output of
SNSVD (i.e., sparse singular vectors u and v), we can identify a gene module whose members are from the nonzero elements of u and v. Herein, we
show a toy example to explain how SNSVD works. The gene module identified by SNSVD contains four genes (g1, g2, g3, g4) and five samples
(s1, s2, s3, s4, s5), where the four genes are correlated across the five samples and the four genes correspond to a dense subnetwork of PPI network

data, where a tissue type contains about 40 cell lines and a
cancer type contains about 12 cell lines.

Identifying functional modules
We set σ = 100 according to 5-fold cross validation
test, and set kv = 50 (control the sample sparsity). In

addition, we also selected a suitable λ to force the esti-
mated u only containing 200 nonzero elements (control
the gene sparsity). Using Algorithm 3, we identified the
first 40 pairs of singular vectors {(u1, v1), · · · , (u40, v40)}.
Let U =[ u1; · · · ; u40] and V =[ v1; · · · ; v40], where the ith
column of U and V correspond to the ith pair of sparse

Fig. 2 Performance of different methods on simulated data when γ is varied (γ is a parameter to control the signal-to-noise ratio). “Sensitivity”
denotes the percentage of true non-zero entries in the identified vector, “Specificity” denotes the percentage of true zero entries in the identified
vector, and “Accuracy” denotes classification accuracy
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Fig. 3 Distribution of the number of samples (i.e., cell lines) and genes from the identified modules by SNSVD on the CGP data

singular vectors. To reduce the false positive cases, we first
calculated absolute z-score for each column of U (or V )
according to Eq. (1). For each non-zero xij, we define the
following formula:

zij = ||xij| − μj|
σj

, (1)

where xij is i-th element in uj (or vj), μj is the average value
of all non-zero elements in uj (or vj), and σj is their stan-
dard deviation. If zij is greater than a given threshold, the
corresponding gene (or sample) is then selected into the
module j. Herein, we obtained 40 gene functional modules
with 160 genes and 40 samples in average (Fig. 3).

Functional analysis of the genes in modules
Firstly, we investigated whether the genes within the same
modules are significantly co-expressed by calculating the
modularity score in Eq. (17), the result showed that all
identified modules were statistically significant with p-
value <0.01 by using one-sided Wilcoxon signed rank test
(Fig. 4).

Secondly, we also investigated whether the genes within
the same modules are connected with each other in the
prior PPI network via the gene-gene interaction enrich-
ment score. The result showed that 57% of the 40 modules
were significantly inter-connected with each other in the
PPI network, illustrating that our method tend to cluster
genes interacting with each other.

Fig. 4 The modularity scores of the identified modules by SNSVD on the CGP data. The red line in plot denotes an average modularity score of
randomized modules (gene sets)
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Finally, we also checked the biological relevance of all
the identified gene modules using gene functional enrich-
ment analysis via DAVID online web tool [27]. By selecting
the GO BP (Gene Ontology Biological Process) and KEGG
pathways with Benjamini-Hochberg adjusted p-values <

0.05 as significant ones, we obtained 766 significant GO
BP pathways and 70 significant KEGG pathways. By statis-
tically, 62.5% modules are significantly related with at least
one GO BP pathways and 42.5% modules are significantly
related with at least one KEGG pathways.

Functional analysis of the samples in modules
To evaluate the subtype-specific of samples in the identi-
fied modules, we computed the overlapping significance
level of between module-samples and cancer/tissue spe-
cific samples. For each gene module, we first collected a
sample set from the module. We then computed the over-
lapping significance levels between the sample set and any
one tissue-sample set using the right hypergeometric test
(Fig. 5A), and the overlapping significance levels between

Fig. 5 These identified gene modules by SNSVD are subtype-specific
related to some tissues or cancer types. A is a heatmap in term of
different tissues. B is a heatmap in term of different cancer types.
Note that each blue square in the two heatmaps corresponds to a
significance overlapping relationship (Hypergeometric test, p <0.05)

the sample set and any one cancer-sample set (Fig. 5B).
We found that most of the identified gene modules can be
seen as subtype-specific gene functional modules, which
provide insights into the mechanisms of the relationship
between different tissues and cancers.

Additionally, we also found that the cancer/tissue types
of some modules are consistent with their corresponding
functional pathways. Some examples are listed in Table 1
(See also Fig. 5). For example, module 1 contains 47
cell lines significantly overlapping with blood tissue and
some blood-related cancers (e.g., AML, B cell leukemia,
B cell lymphoma, lymphoblastic leukemia, lymphoblastic
T cell leukaemia, lymphoid_neoplasm other), while the
top enriched GO/KEGG pathways of 174 genes in mod-
ule 1 are related to the immune system. Some previous
work have reported that the development of blood-related
cancers are associated with immune pathway abnormal-
ities [28, 29]. Similarly, these samples in module 2 are
also significantly related with some blood-related cancers
(B cell leukemia, B cell lymphoma, Burkitt lymphoma,
lymphoblastic leukemia, and lymphoid_neoplasm other),
while some genes in which are significantly enriched
in some immune-related pathways. These samples in
module 4 are significantly related with central nervous
system (CNS), while some genes in which are signif-
icantly enriched in nervous system related GO/KEGG
pathways.

Finally, we also evaluated whether the identified 40
modules are greatly overlapped. Since each module con-
tains a gene set and a sample set. To assess the overlapping
relationship between two different modules. For any two
gene modules, we computed the overlapping significance
level p1 and p2 between their gene sets and sample sets
respectively by using the right-tailed hypergeometric test.
If p1 < 0.05 and p2 < 0.05, then we considered that the
two modules are significant overlapped. Among all 780
module-module pairs for the identified 40 modules, we
found that only 17 out of the 780 module-module pairs are
significantly overlapped (Fig. 6), showing that our method
can find diverse functional modules.

Comparison with sparse SVD on the CGP gene expression
data sets
Since L0SVD have shown good performances in sim-
ulation study compared to other sparse SVD methods,
we compared it with our method to further illustrate
the importance of integrating the PPI network. To this
end, we also identified 40 gene modules on the CGP
data by using L0SVD and Fig. 7 shows the comparing
results. We found that the interaction enrichment scores
of the identified modules by SNSVD were significantly
higher than that by L0SVD (one-sided Wilcoxon signed
rank test p-value <0.01) (Fig. 7A). These results demon-
strate that SNSVD can find more tightly connected genes
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Table 1 The first five enriched GO/KEGG pathways of top ten
modules identified by SNSVD on the CGP data where “P-value”
denotes Benjamini-Hochberg adjusted P-value

Module Enriched GO/KEGG pathways P-value

1 GO:0006952˜defense response 3.08e-12

1 GO:0001775˜cell activation 1.11e-10

1 GO:0045321˜leukocyte activation 2.55e-10

1 GO:0006955˜immune response 7.34e-10

1 GO:0042110˜T cell activation 1.42e-07

2 GO:0006955˜immune response 4.03e-12

2 GO:0006414˜translational elongation 1.28e-08

2 hsa03010:Ribosome 2.96e-08

2 hsa04662:B cell receptor signaling pathway 4.31e-08

2 GO:0001775˜cell activation 2.00e-07

3 GO:0006414˜translational elongation 2.11e-86

3 hsa03010:Ribosome 3.28e-81

3 GO:0006412˜translation 6.62e-57

3 GO:0042273˜ribosomal large subunit
biogenesis

3.27e-04

3 GO:0042254˜ribosome biogenesis 2.38e-03

4 GO:0006836˜neurotransmitter transport 8.83e-06

4 GO:0030182˜neuron differentiation 3.50e-03

4 GO:0007269˜neurotransmitter secretion 6.71e-03

4 GO:0050767˜regulation of neurogenesis 1.79e-02

4 GO:0048667˜cell morphogenesis involved in
neuron diff.

1.83e-02

6 GO:0042110˜T cell activation 8.05e-11

6 hsa04660:T cell receptor signaling pathway 3.35e-09

6 GO:0045321˜leukocyte activation 1.08e-08

6 GO:0001775˜cell activation 1.43e-08

6 GO:0046649˜lymphocyte activation 2.44e-08

7 GO:0051276˜chromosome organization 3.86e-10

7 GO:0006350˜transcription 7.90e-10

7 GO:0006325˜chromatin organization 1.98e-09

7 GO:0045449˜regulation of transcription 4.23e-08

7 GO:0008380˜RNA splicing 1.88e-07

9 hsa04080:Neuroactive ligand-receptor
interaction

1.03e-04

10 GO:0006955˜immune response 1.61e-23

10 hsa05330:Allograft rejection 7.40e-16

10 hsa04940:Type I diabetes mellitus 5.44e-15

10 hsa05332:Graft-versus-host disease 1.46e-12

10 hsa04672:Intestinal immune network for IgA
production

3.05e-11

Fig. 6 The overlapping significance level between any two identified
modules by SNSVD on the CGP data. Each gray corresponds to a
significance overlapping relationship (Hypergeometric test, p <0.05)

than L0SVD by integrating the PPI network. Furthermore,
SNSVD obtains a greater number of significant GO BP
terms at different levels than L0SVD (one-sided Wilcoxon
signed rank test p-value <0.001) (Fig. 7B), showing that
incorporating the PPI network does help SNSVD to dis-
cover more biological interpretable modules.

Application to the BRCA data sets
Data and preprocessing
We downloaded the processed RNA-seq and miRNA-seq
data of Breast invasive carcinoma (BRCA) from TCGA
database [30] (Broad GDAC Firehose: http://firebrowse.
org/). We firstly filtered out the genes and the miR-
NAs which are not expressed in more than 70% samples
and the raw gene/miRNA expression values were log2-
transformed. Secondly, we used the wilcoxon rank sum
test to identify differentially expressed genes/miRNAs
with bonferroni adjusted p-value <0.05 between cancer
and adjacent normal samples. It causes 9896 differentially
expressed genes and 320 differentially expressed miRNAs
to be preserved. Thirdly, we imputed the missing values
of miRNA and gene expression data by using k-nearest
neighbors [31]. Finally, we extracted the matched gene
and miRNA expression matrices across cancer and adja-
cent normal samples, where A1 and B1 represent gene
and miRNA expression data of cancer samples, respec-
tively and (ii) A2 and B2 represent gene and miRNA
expression data of adjacent normal samples, respectively
(Fig. 8A). There are 9896 genes and 320 miRNAs, 760 can-

http://firebrowse.org/
http://firebrowse.org/
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Fig. 7 (A) Comparison of the gene-gene interaction enrichment scores of the identified modules by SNSVD and L0SVD, respectively, on the CGP
data. (B) Functional enrichment comparison based on the number of GO BP (Gene Ontology Biological Process) terms

cer samples and 87 adjacent normal samples in the BRCA
data sets.

Additionally, we also downloaded a PPI network from
Pathway-Commons database [26], and collected a set of
cancer genes from the allOnco database (http://www.

Fig. 8 A framework based on SNSVD method for identifying
differentially co-expressed miRNA-gene modules on the BRCA data.
A Calculating two miRNA-gene correlation matrices X1 and X2 using
the Pearson correlation method based on the four expression
matrices A1, A2, B1 and B2 whose rows were centered and scaled.
B We first obtain the differential correlation matrix X by using
X = X1 − X2. Then, SNSVD is used to identify top ten differentially
co-expressed miRNA-gene modules by integrating the differentially
co-expressed matrix X and a PPI network

bushmanlab.org/links/genelists) which merges some dif-
ferent cancer genes from several databases, and a set of
cancer miRNAs from the reference [32].

Identifying differentially co-expressed miRNA-gene modules
Recent research revealed that some abnormal miRNA-
gene regulatory relationship plays key roles in tumor pro-
gression and development [33–35]. Some computational
methods have been proposed for identifying miRNA-
gene co-expressed modules by using matched miRNA and
mRNA expression data of cancer [13, 36–40]. Though
power, these methods do not ensure that the miRNAs and
genes in a module are differentially expressed between
two biological conditions. Besides, some methods have
already been developed for differential co-expression
analysis [41–44]. However, these methods only focus on
single gene expression data analysis. To this end, we pro-
posed a new framework based on SNSVD for analyzing
matched miRNA and mRNA expression data between
two biological conditions to identify differentially co-
expressed miRNA-gene modules (Fig. 8).

Herein, we applied SNSVD to the BRCA data and
empirically set λ, kv in SNSVD to yield top ten differ-
entially co-expressed modules for each σ . Each identi-
fied miRNA-gene module contain about 10 miRNAs and
100 genes. Formally, a miRNA-gene module contains a
miRNA set and a gene set. We found that as σ becomes
larger, the modules identified by SNSVD contain more
edges (Table 2). The results showed SNSVD could over-
come the drawbacks of sparse SVD (SNSVD with σ = 0
in Table 2) to capture the modules with more edges by
incorporating the PPI network.

http://www.bushmanlab.org/links/genelists
http://www.bushmanlab.org/links/genelists
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Table 2 Application of SNSVD to the BRCA data. “edge.avg”
represents the average of number of edges of modules in the PPI
network, and “Fold Change” represents the fold change of
“edge.avg” between the identified modules and random
modules, and “d.avg” denotes the average of singular values of
modules

Method σ edge.avg FC.avg d.avg

Sparse SVD 0 27.05 1.27 25.74

SNSVD 1 26.70 1.25 25.75

SNSVD 10 35.05 1.64 25.70

SNSVD 20 56.45 2.65 25.68

SNSVD 40 85.95 4.03 24.91

SNSVD 60 179.45 8.42 22.79

SNSVD 80 132.10 6.20 22.94

SNSVD 90 126.00 5.91 22.12

SNSVD 100 108.10 5.07 21.61

SNSVD 150 251.05 11.78 16.50

SNSVD 200 231.30 10.86 10.24

Note that SNSVD reduces to a sparse SVD when σ = 0

Functional analysis of modules
Without loss of generality, the ten modules identified by
SNSVD with σ = 60 (See Table 2) were considered for
further biological analysis. We found that (i) the average
adPCC (absolute differential Pearson Correlation Coeffi-
cient) for the identified modules by SNSVD on the BRCA
data is larger than the average of all absolute elements of
X (Wilcoxon rank-sum test, p < 1e − 16) (Fig. 9A); (ii)
more than half of the miRNAs in the 70% (7 of 10) mod-
ules are cancer miRNAs, and 80% (8 of 10) modules are
significantly enriched at least one KEGG/GO BP path-
way (Benjamini-Hochberg adjusted p < 0.05); (iii) three
modules (module 2, 3 and 8) contain significantly more
cancer genes with hypergeometric test, p < 0.05. More
results are shown in Fig. 9B. Additionally, we obtained 39
miRNAs and 961 genes by combining the identified ten
modules. We found that about 50% (19 of 39) miRNAs
are cancer miRNAs, and about 21% (203 of 961) genes are
cancer genes (hypergeometric test, p < 4.3e − 6).

Discussion
In our previous work, SSVD has been developed for mod-
ule discovery and its effectiveness has been demonstrated
[13]. However, it cannot integrate the gene network data
from PPI network. To this end, we develop the SNSVD
method that integrates gene expression data and a gene
interaction network to identify underlying gene functional
modules. In the SNSVD, we define a sparse network regu-
larized function which is a combination of L1-regularized
norm and network-regularized norm to make the biclus-
tering process tend to select interacted genes in the prior

gene interaction network. Experimental results on the
CGP and BRCA data demonstrate that SNSVD can over-
come the drawbacks of SSVD. Although SNSVD is an
effective method, some further studies are deserved to
investigate: (1) extend SNSVD to identify non-linear rela-
tionships; (2) extend SNSVD to integrate other omics
data, such as DNA methylation data; (3) apply SNSVD to
other biological problems.

Conclusions
In this paper, we presented a Sparse Network-regularized
SVD (SNSVD) model for network-based cancer genomics
data integration analysis and developed an alternating
iterative algorithm to solve the model. By comparing with
other representative methods on the simulated data and
the real data, we found that SNSVD could find modules
with high qualities by integrating the PPI interaction net-
work. By investigating the modules identified by SNSVD
on the CGP data, we found that all the genes within the
same modules are co-expressed, and most genes in the
same modules are connected with each other in the prior
PPI network and enriched in at least one gene functional
term. Besides, we also applied our method to the BRCA
data from TCGA database for identifying ten differen-
tially co-expressed miRNA-gene modules. Some breast
cancer related miRNA-gene modules were discovered. To
sum up, our work provides a promising way to integrate
the network information into the sparse SVD framework,
which can help to find biologically significant functional
modules and makes the results easily interpreted. An
R package of SNSVD is available at https://github.com/
wenwenmin/SNSVD.

Methods
Sparse network-regularized SVD (SNSVD) model
Let X ∈ R

p×n (p genes and n samples) be the gene expres-
sion data. Suppose A ∈ R

p×p is an adjacency matrix of a
PPI network, where Aij = 1 if vertex i and j is connected
and Aij = 0 otherwise. Thus, the normalized Laplacian
matrix L = (Lij)p×p encoding the PPI network can be
defined as:

Lij =

⎧
⎪⎨

⎪⎩

1, if i = j and di �= 0,
− Aij√

didj
, if i and j are adjacent,

0, otherwise.
(2)

where di = ∑p
j=1 Aij. Correspondingly, we have uT Lu =

1
2

∑
i
∑

j Aij

(
ui√
di

− uj√
dj

)2
, which encourages the esti-

mated coefficients of u to be smooth over adjacent genes
in the PPI network A [20]. To further force u to be sparse,
we introduce a sparse network-regularized penalty:

https://github.com/wenwenmin/SNSVD
https://github.com/wenwenmin/SNSVD
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Fig. 9 Biological function analysis of the identified ten differentially co-expressed miRNA-gene modules by SNSVD with σ = 60. A For each module,
the distribution (pink area) is fitted based on the absolute values of all the elements in the differentially co-expressed matrix X , and the distribution
(light blue area) is fitted based on the absolute values of the elements from the module corresponding submatrix in X . P-values were computed by
using permutation test. B For each module, “Average of adPCC” is the average of the absolute values of the elements from the module
corresponding submatrix in X . “#Gene edges”, “#Cancer gene”, “#Cancer miRNA”, “#KEGG pathways” and “#GOBP pathways” represent the number
of interaction edges, cancer genes, cancer miRNAs, significantly enriched KEGG pathways and GO BP pathways (Benjamini-Hochberg adjusted
p < 0.05), respectively

P1(u) = λ‖u‖1 + σuT Lu, (3)

where λ and σ are two parameters. In the penalty (3),
the L1 norm (‖u‖1) is to induce sparsity in u; and the
quadratic Laplacian norm (uT Lu) makes the selected
genes tend to connect with each other in the PPI network.

To integrate the network information in SVD frame-
work, we present a sparse network-regularized SVD
(SNSVD) model as follows:

minimize
u,v,d

‖X − duvT‖2
F

subject to ‖u‖2
2 ≤ 1, λ‖u‖1 + σuT Lu ≤ c1,

‖v‖2
2 ≤ 1, ‖v‖0 ≤ kv,

(4)

where c1 and kv are two parameters to control the number
of selected genes and samples separately. As for the sam-
ples, we simply use a L0-regularized penalty on v sample
variables (corresponding to sample variables) to induce
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sparseness. Compared to L1-norm, L0-norm is known as
the most essential sparsity measure and has nice theoreti-
cal properties [15, 45].

SNSVD algorithm
Since ||X − duvT ||2F = tr

(
XXT) + d2tr

(
uvT vuT) −

2duT Xv, where tr(·) denotes the trace of a matrix;
Both u and v are guaranteed to be two unit vectors,
tr

(
uvT vuT) = tr

(
uT uvT v

) = 1. Minimizing ||X −
duvT ||2F in Eq. (4) is equivalent to minimizing −uT Xv.
Although there are three parameters u, v and d to be opti-
mized in Eq. (4). It is notable that once u and v are fixed,
then d can be determined d = uT Xv in Eq. (4). Thus, to
solve Eq. (4), we just need to optimize u and v. Inspired
by Ref. [46], we present an alternating iterative strategy
to solve u and v, i.e., fixing v to update u and fixing u to
update v.

Fixing v in Eq. (4), it is equivalent to solve the following
sub-problem:

minimize
u

−uT Xv

subject to ‖u‖2
2 ≤ 1, λ‖u‖1 + σuT Lu ≤ c1.

(5)

Let z = Xv, the optimization problem in (5) can be
redefined as follows:

minimize
u

− uT z

subject to ‖u‖2
2 ≤ 1, λ‖u‖1 + σuT Lu ≤ c1.

(6)

To solve it, we write its Lagrangian form as follows:

L(u) = −uT z + ηuT u + λ‖u‖1 + σuT Lu, (7)

where λ ≥ 0 , η ≥ 0, σ ≥ 0. In order to facilitate the
calculation without loss of generality, we use 1

2η instead of
η, 1

2σ instead of σ , then Eq. (7) can be rewritten as:

L(u) = −uT z + 1
2
ηuT u + λ‖u‖1 + 1

2
σuT Lu. (8)

It is a convex function with respect to u, therefore
its optimal solution can be characterized by some sub-
gradient equations (see e.g., [47]). Since L = I −
D−1/2AD−1/2 (based on Eq. 2). For convenience, let W =
I − L = D−1/2AD−1/2 (D is a diagonal matrix and
Dii = ∑

j Aij), then we have the sub-gradient equations of
Eq. (8) as:

∂L
∂uj

= −zj + ηuj + λsj + σuj − σW ju = 0, j = 1, · · · , p.

(9)

where sj = sign(uj) if uj �= 0 and sj ∈ {t, |t| ≤ 1}
otherwise; and W j is the jth row of matrix W . Let the
solution of (8) be û = (

û1, û2, · · · , ûp
)
. By using a coor-

dinate descent method [48, 49], we obtain the following
coordinate update rule for ûj:

ûj =
{

0 if |zj + σW jû| ≤ λ,
zj+σW jû−λsign(̂uj)

η+σ
otherwise. (10)

Define S(a, λ) = sign(a)(|a| − λ)+, we have ûj =
S(zj + σW jû, λ)/(η + σ). Let ŭj = (zj + σW jû, λ) and
ŭ = (

ŭ1, ..., ŭp
)T , we can obtain a normalized solution

u = û
‖û‖2

= ŭ
‖ŭ‖2

. In a word, we use a coordinate descent
method to minimize Eq. (8) and update one uj at a time
while keeping uk fixed for all k �= j.

Fixing u in Eq. (4), it is equivalent to solve the following
sub-problem:

minimize
v

‖X − duvT‖2
F

subject to ‖v‖2
2 ≤ 1, ‖v‖0 ≤ kv.

(11)

Let zv = XT u, v̂ = dv, we thus have ‖X − duvT‖2
F =

‖zv − v̂‖2
2 + c, where c = tr

(
XT X

) − uT XXT u. Obviously
c is a constant value with respect to v. Thus problem (11)
is equivalent to:

min
v̂

‖zv − v̂‖2
2, subject to ‖̂v‖0 ≤ kv. (12)

Its optimal solution is v̂ = zv • I(|zv| ≥ |zv|(kv)) where
I(·) is the indicator function and " • " is point multiplica-
tion function, and |zv|(i) denotes the i-th order statistic of
|zv|, i.e. |zv|(1) ≥ |zv|(2) ≥, ..., ≥ |zv|(n). In other words,
we only keep the kv variables of zv corresponding to its kv
largest absolute values. The normalized optimal solution
of Eq. (11) is v = v̂/‖̂v‖2, i.e.,

v = zv • I(|zv| ≥ |zv|(kv))

‖zv • I(|zv| ≥ |zv|(kv))‖2
. (13)

Finally, we develop an alternating iterative algorithm by
alternately updating u and v to solve SNSVD model. The
details of this algorithm is given in Algorithm 1, and its
time complexity is O

(
Tnp + Tp2 + Tn2), where T is the

number of iterations.

Convergence analysis of SNSVD algorithm
Next, we give the convergence analysis of Algorithm 1.
In fact, Algorithm 1 is to solve the Lagrangian form of
problem (4) as follows:

minimize
u,v,d

− uT Xv + λ‖u‖1 + σuT Lu

subject to ‖u‖2
2 ≤ 1, ‖v‖2

2 ≤ 1, ‖v‖0 ≤ kv.
(14)

Let H(u, v) = −uT Xv + σuT Lu, f (u) = ρ(u) + λ‖u‖1
and g(v) = ρ(v) + τ(v, kv) where

ρ(u) =
{

0, if ‖u‖2
2 ≤ 1

+∞, otherwise. (15a)

ρ(v) =
{

0, if ‖v‖2
2 ≤ 1

+∞, otherwise. (15b)

τ(v, kv) =
{

0, if ‖v‖0 ≤ kv
+∞, otherwise. (15c)
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Algorithm 1 SNSVD algorithm
Require: Data matrix X ∈ R

p×n; PPI network A ∈ R
p×p;

Parameters λ, kv, σ .
Ensure: u, v, d.

1: Initialize u and v with ‖u‖2 = ‖v‖2 = 1
2: Compute W = D−1/2AD−1/2

3: repeat
4: Let z = Xv
5: for j = 1 to p do
6: uj = S

(
zj + σW ju, λ

)
# Network-guiding

7: end for
8: u = u

‖u‖2
# Normalizing

9: Let z = XT u
10: v = z • I

(|z| ≥ |z|(kv)
)

# L0-norm
11: v = v

‖v‖2
# Normalizing

12: d = uT Xv # Computing singular value
13: until convergence
14: return u, v, d.

Therefore the Lagrangian form of problem (4) can be
written as F(u, v) = H(u, v)+ f (u)+ g(v) which is a semi-
algebraic function [46]. Based on the Theorem 1 in [46],
Algorithm 1 converges to a critical point of F(u, v).

Algorithm 2 Select σ parameter of SNSVD algorithm
Require: Data matrix X; PPI network A; λ, kv.
Ensure: The optimal parameter σ .

1: Generate 5 data matrices X1, · · · , X5 from X with
the same dimensionality, each of the matrices misses
a non-overlapping 1/5 of the elements of X. These
missing elements are selected randomly from X.

2: for each σ do
3: for l = 1, 2, · · · , 5 do
4: Let Y = X l.
5: Use the average value of the all non-missing ele-

ments of Y to replace the missing elements of Y .

6: Apply SNSVD to obtain ul, vl, and dl for the
input data Y and A.

7: end for
8: Calculate the 5−fold cross-validation (CV) score:

CV = 1
5

5∑

l=1
‖
(

X − dlulvT
l

)
• is.na(X l)‖2. (16)

9: end for
10: return Select a σ with smallest CV score.

Parameter selection of SNSVD algorithm
As to λ and kv’s choice in Algorithm 1 when it is applied
to the CGP gene expression data, we select a suitable

λ to force the estimated u only containing 200 nonzero
elements which is beneficial for further analysis of the bio-
logical function of the module and set kv = 50 (control the
sample sparsity) which ensures that the number of sam-
ples within in the module is approximately the same as
the number of samples of a subtype. As to σ ’s choice in
Algorithm 1, we present a 5-fold cross-validation frame-
work (Algorithm 2). To this end, we define a binary matrix
is.na(X) with the same size of X and the elements are 1 if
they are missing in X, 0 otherwise.

Learning multiple pairs of singular vectors using SNSVD
It is notable that every run of Algorithm 1 can only obtain
a pair of sparse singular vectors u and v (Fig. 1). In order
to identify multiple modules, we can repeat running Algo-
rithm 1. After each turn of the iteration, we use the
obtained u, v and d to modify the gene expression data
X, (X := X − duvT ), the modified X is then used as the
new input data for the next run to obtain the next pair
of singular vectors. Moreover, we notice that Algorithm 1
may get different local optima with different initials, we
run Algorithm 1 five times with different initials which are
generated according to the multivariate standard normal
distribution and choose the best one as the final solu-
tion of each turn. The detailed procedure is described in
Algorithm 3.

Algorithm 3 Learning multiple pairs of singular vectors
using SNSVD algorithm
Require: Data matrix X; PPI network A; Integer K.
Ensure: U , V , �.

1: Let X1 = X
2: for k = 1, ..., K do
3: Apply Algorithm 1 five times with five different ini-

tials to obtain the best optimal uk , vk , and dk for the
input data Xk and A

4: Xk+1 = Xk − dkukvT
k

5: end for
6: return U = (u1, · · · , uK ), V = (v1, · · · , vK ), � =

diag (d1, · · · , dK ).

Modularity score
To assess whether the genes within the same module
are co-expressed/correlated, we use a modularity score
to describe the overall co-expression of genes within the
module. For a given module k containing pk genes and nk
samples, we first calculate the correlation between gene
i and j across the nk samples, denoted as wij. For con-
venience, we force to set wii = 0 for each i. Then the
modularity score of the module can be defined as:
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Modularity = 1
pk · (pk − 1)

pk∑

i=1

pk∑

j=1
|wij|. (17)

Intuitively, if a module has a high modularity score, then
the genes within the module is highly co-expressed.

Gene-gene interaction enrichment score
In order to evaluate whether the genes within the same
module are tightly connected in the prior PPI network,
we use the right tailed hypergeometric test to compute a
significance level of each module. Suppose that the PPI
network contains n genes and m edges, and module i con-
tains ni genes and mi edges, then the significance level of
module k can be calculated via the following equation:

p(i) =
∑

x<mi

(m
x
)(N−m

mi−x
)

(N
Ni

) , (18)

where N = (n
2
)

and Ni = (ni
2
)
. Accordingly, we can define

the gene-gene interaction enrichment score s(i) of the
module i by the following formula:

s(i) = −log10(p(i)). (19)

The higher the gene-gene interaction enrichment score
is, the denser the genes connect with each other. If the
score is higher than 1.3, then the genes are significantly
inter-connected with each other in the PPI network.
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