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Abstract

Background: The Human Leukocyte Antigen G (HLA-G) protein is an immune tolerogenic molecule with 7 isoforms. The
change of expression level and some polymorphisms of the HLA-G gene are involved in various pathologies. Therefore, this
study aimed to predict the most deleterious missense non-synonymous single nucleotide polymorphisms (nsSNPs) in HLA-G
isoforms via in silico analyses and to examine structural and functional effects of the predicted nsSNPs on HLA-G isoforms.

Results: Out of 301 reported SNPs in dbSNP, 35 missense SNPs in isoform 1, 35 missense SNPs in isoform 5, 8
missense SNPs in all membrane-bound HLA-G isoforms and 8 missense SNPs in all soluble HLA-G isoforms
were predicted as deleterious by all eight servers (SIFT, PROVEAN, PolyPhen-2, I-Mutant 3.0, SNPs&GO, PhD-
SNP, SNAP2, and MUpro). The Structural and functional effects of the predicted nsSNPs on HLA-G isoforms
were determined by MutPred2 and HOPE servers, respectively. Consurf analyses showed that the majority of
the predicted nsSNPs occur in conserved sites. I-TASSER and Chimera were used for modeling of the
predicted nsSNPs. rs182801644 and rs771111444 were related to creating functional patterns in 5′UTR. 5 SNPs
in 3′UTR of the HLA-G gene were predicted to affect the miRNA target sites. Kaplan-Meier analysis showed
the HLA-G deregulation can serve as a prognostic marker for some cancers.

Conclusions: The implementation of in silico SNP prioritization methods provides a great framework for the
recognition of functional SNPs. The results obtained from the current study would be called laboratory
investigations.
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Background
Single-Nucleotide Polymorphisms (SNPs) are the most
copious type of human genetic sequence alterations that
exist throughout the genome [1–3]. A missense mutation
is a type of nonsynonymous (nsSNPs) substitution in
which the one amino acid is substituted with another and
may produce a mutated protein with structural and func-
tional changes that may lead to disease. One of the main
challenges for scientists is to identify SNPs that are patho-
genic or related to a particular effect in humans [4]. Now-
adays, deleterious nsSNPs in the desired gene can be
identified using in -silico approaches. These approaches
are reliable, user-friendly, fast, and low cost [5].
The major histocompatibility complex (MHC) is a

group of genes encoding essential proteins for the adap-
tive immune system to identify fragments derived from
pathogens [6]. In humans, The MHC complex is also
called the human leukocyte antigen (HLA) complex [7].
The HLA genes have been classified into 3 classes I, II,
and III. MHC class I genes are divided into two groups:
major or classical (HLA-A, HLA-B, and HLA-C) and
minor or non-classical (HLA-E, HLA-F, and HLA-G)
[8], as they differ from each other by their genetic diver-
sity, expression, structure, and functions [9].
The Human Leukocyte Antigen G (HLA-G) is a protein-

coding gene on chromosome 6p21.3 and has an important
function in modulation of the immune responses and

diseases such as chronic viral infections, autoimmune dis-
orders, transplantation and cancers [10, 11].
HLA-G gene displays low polymorphism but several

mature mRNAs can be produced as a result of differen-
tial splicing of the primary transcript. The mature
mRNAs encode 7 different protein isoforms, 4 of them
being membrane-bound (HLA-G1 to G4), and 3 soluble
or secreted (HLA-G5 to G7) [11]. Also, Roux et al. re-
ported an inventory of novel HLA-G isoforms that have
an extended 5′-region and lack the transmembrane and
alpha-1 domains [12]. Soluble HLA-G1 (sHLA-G1) pro-
tein can be produced through the proteolysis activity of
metalloprotease which maintains the functions of the
membrane counterpart completely [13]. The general
structure of an HLA-G protein consists of a heavy chain
of 3 globular domains (α1, α2, and α3) and a light chain
(β-2-microglobulin (B2M)) and a peptide (Fig. 1) [9].
HLA-G is involved in the control of the immune re-

sponses to maintain a fetomaternal tolerance in preg-
nancies [15]. Interaction of immune effector cells with
HLA-G often introduces the suppression of them. The
effects of inhibition are performed via three ITIM-
bearing receptors expressed on various immune cells:
ILT2/CD85/LIR-1, ILT4/CD85d/LIR-2, and KIR2DL4/
CD158d [9, 16]. ILT2 is expressed by myeloid and
lymphoid cells, ILT4 by myeloid cells, and KIR2DL4 by
NK and T CD8+ [16]. The binding site of receptors to

Fig. 1 HLA-G heavy chain gene comprises 7 introns (i1-i7) and 8 exons (each with a distinctive color) with an internal stop codon in Exon 6. As shown in
figure each exon encodes a discrete part of the heavy chain, except exon 7 and 8. Alternative splicing events of HLA-G primary transcript (exclusion exon 3
or/and exon 4 and keeping of intron 4 or intron 2 from the final gene transcript) generate seven isoforms. Soluble isoforms lack the transmembrane and
cytoplasmic regions due to the intron retention, which includes an immature stop codon. HLA-G5 and HLA-G6 have a tail (21 amino acids) that plays a
role in their solubility. HLA-G1 is the complete molecule. HLAG1 is homologous to HLA-G5 and both of them associate with B2M. The signal peptide (exon
1) and α1 domain (exon 2) are existing in all isoforms. Figure modified from Bainbridge et al. [14]
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HLA-G is different. Interaction of HLA-G with ILT2 re-
quires the association of the α3 domain with β2M but
not for binding to ILT4. The KIR2DL4 binds to the α1
domain [11, 15, 16].
sHLA-G and membrane-bound HLA-G isoforms have

alike functions. The membrane-bound HLA-G inhibits
peripheral natural killer (NK) cytotoxicity and CD4+

cells directly through interaction with ILT2. The decid-
ual NK (dNK) cells up-take and internalize HLA-G from
the cell membrane of extravillous trophoblast cells
through trogocytosis. HLA-G internalization results in
maintaining low cytotoxicity and immunosuppressive
status of dNK cells to protect the fetus versus dNKs
activity and further release of a set of angiogenic factors
to promote vascular remodeling and fetal growth at the
beginning of pregnancy. The interaction of HLA-G with
ILT2s on CD4+ T cells decreases the alloproliferative ef-
fect of CD4+ T cells. Binding sHLA-G to ILT4+ DCs
leads to the generation of IL-10 and IL-10-producing
DCs can promote the expansion of Tregs (CD4+

CD25highFOXP3) and Tr1s differentiation. Besides, the
rapid reproduction, differentiation, and antibody produc-
tion of B cells are inhibited due to HLA-G interplay with
the LILRB1s on B cells. Moreover, apoptosis of CD8+ T
cells through activation of the FasR/FasL pathway and
endothelial cells are induced by HLA-G5 via interactions
with CD8 receptor on CD8+ T cells and CD160 on
endothelial cells [15–17].
HLA-G has a restricted tissue-specific protein expres-

sion in normal situations examples being extravillous
cytotrophoblasts in the placenta, some immune cells,
thymic medulla, and cornea. The neo-expression of
HLA-G occurs in different pathological situations [15,
18–20].
The expression of HLA-G gene is adjusted mostly by a

unique promoter region in comparison with other HLA
genes and also at the post-transcriptional control level [21].
A single nucleotide polymorphism of a gene in the cod-

ing region or the regulatory region can lead to disease as a
result of the expression change or structural and/or func-
tion alteration [4]. Most experimental and pathological
studies of the HLA-G gene have been focused on
polymorphisms in the promoter and 3ˊ UTR regions.
The rate of polymorphisms in the coding sequence of this
gene is low that indicates a powerful evolutionary pressure
acting on the coding sequence [10].
Polymorphisms in the coding region may change the

conformation of protein which could lead to modification
of protein function including modulating immune re-
sponses, production of isoforms, peptide binding, and abil-
ity polymerization. HLA-G expression may change by
altering the binding affinity of targeted sequences to tran-
scriptional or post-transcriptional factors considering vari-
ations in the HLA-G promoter and 3ˊ UTR regions [10].

Concerning the important function of HLA-G in
health and diseases in human, the main objectives of this
study are to predict the most deleterious missense SNPs
in HLA-G1 and HLA-G5, the common most deleterious
missense SNPs in membrane-bound HLA-G isoforms,
the common most deleterious missense SNPs in soluble
HLA-G isoforms and finally to evaluate the impacts of
the SNPs on the structure and function of HLA-G pro-
tein. The current study presents useful information
about the most deleterious missense SNPs and their
effects on the structure and function of HLA-G protein.
In this paper, we also investigated the correlation be-
tween the survival rates of patients in some cancer types
with HLA-G expression. The various steps of our study
are shown in a flow chart (Fig. 2).

Results
Currently, one of the valuable fields of computational gen-
etic research is the identification of SNPs involved in dis-
eases. At present, the advancement of computational
biology methods has enabled us to detect the damaging
SNPs in the objective genes. Computational methods are
used to study the effect of nsSNPs on protein structure
and function at the molecular level [22]. In this study, sev-
eral computational methods were applied to determine
the most deleterious common missense SNPs between
soluble HLA-G isoforms and the most deleterious com-
mon missense SNPs between membrane-bound HLA-G
isoforms as well as the most deleterious missense SNPs in
HLA-G1 (the longest isoform protein of the HLA-G gene
among membrane-bound HLA-G isoforms) and HLA-G5
isoforms (the longest isoform protein of the HLA-G gene
among soluble HLA-G isoforms).

SNP dataset of the HLA-G gene from NCBI dbSNP and
protein sequences dataset
The desired SNPs of the HLA-G gene were retrieved
from the NCBI dbSNP database because it is the most
extensive SNP database [23]. SNPs retrieved from NCBI
and their corresponding IMGT/HLA alleles are shown
in the supplementary Table 1. Of the total reported
SNPs in the human HLA-G gene sequence, 301 SNPs
are missense (16.38%), 117 SNPs are in 3ˊUTR (6.36%)
and 65 SNPs are in 5ˊUTR (3.53%). A pictorial descrip-
tion of the distribution of SNPs in the HLA-G gene rep-
resented in percentage terms is shown in Fig. 3. Most
tools for analyzing protein require the amino acid se-
quence, for this reason, the protein sequences of seven
HLA-G isoforms were retrieved from the UniProt data-
base. The seven protein isoforms of HLA-G (HLA-G1–
7) consist of 338, 246, 154, 246, 319, 227, and 116 amino
acids respectively, and a 24-amino acid signal peptide.
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Identification of the most deleterious missense SNPs in
HLA-G isoforms using several different servers
At present, there is an extensive range of computational
tools used to predict the consequences of missense SNPs
on protein structure and function. The in silico methods
accuracy for prioritizing candidate deleterious SNPs can

be enhanced by incorporating the results of diverse com-
putational tools based on various parameters. Hence, we
performed the concordance analysis with SIFT, PRO-
VEAN, PolyPhen-2, I-Mutant 3.0, SNPs&GO, PhD-SNP,
SNAP2, and MUpro techniques to predict the most
deleterious nsSNPs from the SNP dataset. All the re-
ported missense SNPs for HLA-G were submitted to
eight mentioned in silico nsSNP prediction algorithms.
We selected missense SNPs that are deleterious in all 8
algorithmic tools manually. Finally, out of total missense
SNPs, 35 missense SNPs were predicted as deleterious in
isoform 1 (HLA-G1) (Tables 1 and 2), 35 missense SNPs
were predicted as deleterious in isoform 5 (HLA-G5)
(Supplementary Tables 2 and 3), 8 missense SNPs were
predicted as deleterious in all membrane-bound HLA-G
isoforms (HLA-G1–4) (Supplementary Tables 4 and 5)
and 8 missense SNPs were predicted as deleterious in all
soluble HLA-G isoforms (Supplementary Tables 6 and
7) and all further investigations were held for only these
missense SNPs.

Fig. 2 Flowchart of the different steps of the study

Fig. 3 The 3-D pie-chart shows the percentage of missense SNPs, 5′
UTR, 3′ UTR and other types of SNPs in HLA-G gene (according to
the dbSNP database on December 2018)
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Table 2 SNPs analyzed in isoform 1by PhD-SNP, SNAP2, Mupro

Isoform 1

SNP rsID Codons Substitution PhD-SNP SNAP2 MUpro

Prediction Score Prediction Score Expected Accuracy Prediction DDG Value

rs17851921 CAC ⇒ CCC H117P Disease 5 effect 94 95% DECREASE -0.94483558

CAC ⇒ CTC H117L Disease 5 effect 82 91% INCREASE 0.17248775

rs111233577 CTG ⇒ CGG L290R Disease 6 effect 52 75% DECREASE -1.4553025

rs142596947 CCT ⇒ ACT P234T Disease 8 effect 58 75% DECREASE -0.8378542

rs144577485 CCC ⇒ GCC P209A Disease 4 effect 30 66% DECREASE -1.3457662

rs145097667 CAT ⇒ TAT H287Y Disease 6 effect 79 85% INCREASE 0.00175126

rs572025435 AGG ⇒ AGT R30S Disease 4 effect 2 53% DECREASE -1.582361

rs748013931 ACC ⇒ CCC T158P Disease 3 effect 56 75% DECREASE -1.0769639

rs749006959 TAT ⇒ TGT Y142C Disease 7 effect 69 80% DECREASE -1.7925753

rs750238738 ATC ⇒ TTC I237F Disease 5 effect 45 71% DECREASE -0.97093071

rs756652306 GTG ⇒ GCG V285A Disease 1 effect 36 66% DECREASE -0.89978472

rs760500349 CAG ⇒ CTG Q266L Disease 6 effect 78 85% DECREASE -0.05227910

rs763201540 GAC ⇒ AAC D53N Disease 5 effect 52 75% DECREASE -0.79149414

GAC ⇒ TAC D53Y Disease 9 effect 84 91% DECREASE -0.45294328

rs765275727 TGG ⇒ CGG W298R Disease 5 effect 87 91% DECREASE -1.1870648

rs770027530 TGC ⇒ TAC C227Y Disease 8 effect 68 80% DECREASE -0.88892871

TGC ⇒ TTC C227F Disease 9 effect 75 85% DECREASE -0.71910267

rs770412396 CTG ⇒ CCG L102P Disease 7 effect 79 85% DECREASE -2.238046

rs772834879 TAC ⇒ CAC Y142H Disease 5 effect 72 85% DECREASE -2.1531554

rs780697086 TGC ⇒ AGC C188S Disease 4 effect 75 85% DECREASE -1.0332928

rs781774818 CCT ⇒ CAT P259H Disease 5 effect 4 53% DECREASE -1.1893017

rs867319917 TGG ⇒ CGG W157R Disease 3 effect 93 95% DECREASE -0.91293557

rs1200732770 GCC ⇒ GAC A229D Disease 8 effect 75 85% DECREASE -0.6414612

rs1260086927 CAG ⇒ CCG Q96P Disease 6 effect 43 71% DECREASE -0.97929591

rs1265409678 CTC ⇒ CGC L294R Disease 6 effect 57 75% DECREASE -1.0427076

rs1317292772 GAT ⇒ AAT D143N Disease 4 effect 22 63% DECREASE -1.2006322

GAT ⇒ CAT D143H Disease 9 effect 25 63% DECREASE -1.2840175

rs1379742188 CGC ⇒ AGC R205S Disease 5 effect 34 66% DECREASE -0.52183883

rs1390270595 TAC ⇒ TGC Y51C Disease 2 effect 39 66% DECREASE -0.83530596

rs1397132797 CTG ⇒ CCG L196P Disease 8 effect 58 75% DECREASE -2.0384073

rs1414848134 GAC ⇒ GTC D54V Disease 5 effect 75 85% DECREASE -0.37383825

rs1430565057 CCT ⇒ CTT P234L Disease 7 effect 81 91% INCREASE 0.3342289

rs1472538844 CCC ⇒ CGC P209R Disease 3 effect 46 71% DECREASE -1.0509858

rs1475659109 CCC ⇒ CTC P39L Disease 5 effect 29 63% DECREASE -0.20370663

rs555347515 ATG ⇒ AAG M29K Disease 6 effect 25 63% DECREASE -1.7776487

rs556645753 GAC ⇒ GGC D153G Disease 2 effect 17 59% DECREASE -2.384922

rs565858069 GAC ⇒ CAC D130H Disease 5 effect 2 53% DECREASE -1.0708696

rs754527717 GAT ⇒ GGT D244G Disease 2 effect 7 53% DECREASE -1.7605711

rs1161818149 CTG ⇒ CAG L105Q Disease 3 effect 70 85% DECREASE -1.8766335

CTG ⇒ CCG L105P Disease 6 effect 76 85% DECREASE -2.1510154
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Conservation analysis of the most deleterious nsSNPs in
HLA-G isoforms by ConSurf sever
Evolutionary information is essential to investigate fur-
ther the possible impacts of deleterious nsSNPs [24].
The ConSurf web server characterizes the evolutionary
conservation profile of amino acid residues in the pro-
tein and whether each amino acid is exposed (on protein
surface) or buried (inside protein core) in the protein
structure. For example, our ConSurf analysis showed
that D53 is an exposed and conserved residue in all sol-
uble HLA-G isoforms and is predicted to have a func-
tional impact on soluble HLA-G isoforms whereas D53
is a buried and conserved residue in isoform 1 and is
predicted a structural residue. The ConSurf server pro-
duces a colorimetric conservation score as a result. The
residues with the utmost change are shown in blue and
the conserved residues are shown in purple. The most
highly conserved residues are significant for biological
function and changing these residues has functional and
structural impacts on the proteins [25]. The ConSurf re-
sults are compiled in Tables 3, supplementary Tables 8–
10, Fig. 4, and supplementary Figs. 1–3. The results
showed that the majority of the most deleterious nsSNPs
(87.5% in isoform 1 and 86.66% in isoform 5) occur in
conserved sites.

Prediction of structural and functional modifications due
to the most deleterious SNPs on the HLA-G isoforms by
MutPred server
The SNPs were predicted as most deleterious also investi-
gated by the Mutpard server to predict the functional ef-
fects of SNPs. The most deleterious SNPs that were
submitted to this server along with their predicted func-
tional and structural effect on isoforms and the resultant
probability scores were represented in Table 4 and supple-
mentary Tables 11–13. For example, W157R in HLA-G1
was found to be highly deleterious with a g score of 0.936
and was predicted to cause the alteration in transmem-
brane protein with a p score of 0.000015, showing very
confident hypothesis. W157R in HLA-G5 was found to be
highly deleterious with a g score of 0.93 and was predicted
to induce alteration in ordered interface with a p score of
0.0017, showing a very confident hypothesis. Gain of sulfa-
tion at D53 was predicted at D53Y in all membrane-bound
HLA-G isoforms (g = 0.746 and p= 0.0044 in HLA-G1, g =
0.628 and p = 0.0088 in HLA-G2, g = 0.785 and p = 0.0051
in HLA-G3 and g = 0.75 and p = 0.0046 in HLA-G4). Loss
of proteolytic cleavage at R30 was predicted at M29K in all
soluble HLA-G isoforms (g = 0.688 and p = 0.0037 in
HLA-G5, g = 0.754 and p = 0.0035 in HLA-G6 and g =
0.772 and p = 0.003 in HLA-G7).

Table 3 Evolutionary conservation pattern of amino acids with solvent accessibility in HLA-G1 by ConSurf server

Isoform 1

conservation
score

exposed
or
buried

prediction conservation
score

exposed
or
buried

prediction conservation
score

exposed
or
buried

prediction conservation
score

exposed
or
buried

prediction

M29 L105 C188 D244

1 (variable) buried - 1 (variable) buried - 9 (conserved) buried structural 7 (conserved) exposed -

R30 H117 L196 P259

6 (average) buried - 9 (conserved) buried structural 9 (conserved) buried structural 9 (conserved) exposed functional

P39 D130 R205 Q266

9 (conserved) exposed functional 8 (conserved) exposed functional 7 (conserved) exposed - 9 (conserved) exposed functional

Y51 Y142 P209 V285

9 (conserved) exposed functional 9 (conserved) buried structural 9 (conserved) buried structural 9 (conserved) buried structural

D53 D143 C227 H287

9 (conserved) buried structural 9 (conserved) exposed functional 9 (conserved) buried structural 9 (conserved) buried structural

D54 D153 A229 L290

8 (conserved) exposed functional 9 (conserved) exposed functional 9 (conserved) buried structural 9 (conserved) buried structural

Q96 W157 P234 L294

7 (conserved) exposed - 9 (conserved) buried structural 9 (conserved) exposed functional 6 (average) buried -

L102 T158 I237 W298

9 (conserved) buried structural 9 (conserved) exposed functional 9 (conserved) buried structural 8 (conserved) exposed functional

Conservation score has a range of 1.0 to 9.0. Score 9 represents the most conserved and 1 represents the very variable amino acid. An amino acid, if is preserved
and exposed, is a functional residue and if is preserved and buried, is a structural residue
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The structural analysis of the most deleterious selected
SNPs on HLA-G isoforms by project Hope server
Project HOPE predicted the effects of amino acid substi-
tutions on native structures of HLA-G isoforms, the
hydrophobicity, charge, and size change between wild-
type and mutant residue and model of the 3D structure.
The HOPE reports indicated that there was no exact
known structural information for HLA-G1, 3, and 5 iso-
forms, and HOPE built the models of them based on
homologous structures while the 3D-structures of HLA-
G2, 4, 6 and 7 isoforms were known. All results of the
effects of the most deleterious predicted SNPs on struc-
tures of the HLA-G isoforms and the difference in physi-
cochemical properties of amino acids of wild type and
mutated residue are reported in detail in Additional file
2 and supplementary Tables 14–16. For instance,

rs555347515 mutation caused amino acid substitution
from methionine into a lysine at the 29th position
(M29K). The inspection of this mutation on HLA-G1
showed the mutated residue is bigger than the wild-type
residue and probably will not fit in the core of the pro-
tein and the mutant residue has a positive charge, while
the wild-type residue is neutral, so the positive charge
can lead to protein folding problems. Furthermore, the
mutation will lead to the loss of hydrophobic interplays
in the center of the protein. Additionally, the structural
analysis of M29K on HLA-G1 showed this variation is
located inside a cluster of residues annotated in UniProt
as the Alpha-1 domain and can disturb the domain
structure and function (Additional file 2). Moreover, A/
G mutation (rs556645753) resulted in a change of the
aspartic acid to glycine at the 153rd position (D153G).

Fig. 4 Consurf analysis of HLA-G1. The degree of conservation of amino acids was shown in the colouring scheme. The color intensity increases
based on amino acids conservation grades e.g. turquoise indicates variable sites; white indicates average sites; maroon indicates evolutionarily
conserved sites. The most deleterious predicted SNPs are marked below the sequence as red arrows. e is the exposed residue. b is the buried
residue. f is an estimated functional residue (highly conserved and exposed). s is an estimated structural residue (highly conserved and buried)
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Table 4 Prediction of functional effects of the most deleterious SNPs on the HLA-G1 by MutPred

Isoform 1 (ID: 79bb0a85-d537-4be0-bff8-d0fdb06b5211)

Substitution Mutpred score (>0.50 is
considered pathogenic)

Molecular mechanism with p-value <= 0.05 Probability P-value prediction

H117P 0.823 Altered Metal binding 0.27 0.02 confident hypotheses

Altered Transmembrane protein 0.26 1.0e-03 very confident hypotheses

Altered Ordered interface 0.25 0.03 confident hypotheses

H117L 0.665 Altered Transmembrane protein 0.28 4.8e-04 actionable hypotheses

Loss of Strand 0.28 9.6e-03 actionable hypotheses

Altered Metal binding 0.27 0.02 actionable hypotheses

Altered Ordered interface 0.25 0.02 actionable hypotheses

L290R 0.644 Altered Transmembrane protein 0.13 0.02 actionable hypotheses

P234T 0.767 Altered Ordered interface 0.32 1.8e-03 very confident hypotheses

Altered Transmembrane protein 0.25 1.3e-03 very confident hypotheses

R30S 0.792 Altered Ordered interface 0.29 5.0e-03 very confident hypotheses

Loss of Proteolytic cleavage at R30 0.21 1.2e-03 very confident hypotheses

Altered Stability 0.20 0.01 confident hypotheses

Altered Metal binding 0.16 3.5e-03 very confident hypotheses

T158P 0.717 Altered Ordered interface 0.32 3.6e-03 actionable hypotheses

Gain of Relative solvent accessibility 0.29 0.01 actionable hypotheses

Altered Disordered interface 0.28 0.03 actionable hypotheses

Loss of Allosteric site at W157 0.28 7.4e-03 actionable hypotheses

Altered Metal binding 0.27 4.4e-03 actionable hypotheses

Altered Transmembrane protein 0.27 6.6e-04 actionable hypotheses

Loss of Helix 0.27 0.05 actionable hypotheses

Altered Coiled coil 0.10 0.04 actionable hypotheses

Y142C 0.681 Altered Metal binding 0.74 1.1e-03 actionable hypotheses

Altered Disordered interface 0.61 1.7e-04 actionable hypotheses

Altered Ordered interface 0.50 1.7e-04 actionable hypotheses

Altered Transmembrane protein 0.29 2.1e-04 actionable hypotheses

Gain of Relative solvent accessibility 0.27 0.02 actionable hypotheses

Loss of Acetylation at K145 0.20 0.04 actionable hypotheses

Loss of Methylation at K145 0.17 0.01 actionable hypotheses

Loss of Ubiquitylation at K145 0.16 0.04 actionable hypotheses

Gain of Disulfide linkage at Y142 0.09 0.05 actionable hypotheses

Loss of Sulfation at Y147 0.09 3.5e-03 actionable hypotheses

I237F 0.658 Altered Disordered interface 0.33 0.01 actionable hypotheses

Altered Ordered interface 0.28 0.04 actionable hypotheses

Altered Transmembrane protein 0.26 1.1e-03 actionable hypotheses

Loss of Strand 0.26 0.04 actionable hypotheses

Loss of Pyrrolidone carboxylic acid at Q242 0.06 0.02 actionable hypotheses

Q266L 0.444 Altered Ordered interface 0.28 0.03 -

Gain of Relative solvent accessibility 0.26 0.03

Loss of Methylation at K267 0.23 3.8e-03

Gain of Acetylation at K267 0.22 0.02

Loss of Pyrrolidone carboxylic acid at Q266 0.21 1.8e-03
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Table 4 Prediction of functional effects of the most deleterious SNPs on the HLA-G1 by MutPred (Continued)

Isoform 1 (ID: 79bb0a85-d537-4be0-bff8-d0fdb06b5211)

Substitution Mutpred score (>0.50 is
considered pathogenic)

Molecular mechanism with p-value <= 0.05 Probability P-value prediction

Altered Metal binding 0.20 0.03

Gain of Catalytic site at D262 0.16 0.02

Altered Transmembrane protein 0.15 0.01

Gain of Proteolytic cleavage at D262 0.14 0.02

D53Y 0.746 Altered Ordered interface 0.39 1.1e-03 actionable hypotheses

Altered Disordered interface =) 0.38 6.6e-03 actionable hypotheses

Altered Metal binding 0.37 1.7e-03 actionable hypotheses actionable

Altered Transmembrane protein 0.19 6.6e-03 hypotheses

Loss of Proteolytic cleavage at D53 0.12 0.03 actionable hypotheses

Gain of Pyrrolidone carboxylic acid at Q56 0.09 0.01 actionable hypotheses

Gain of Sulfation at D53 0.07 4.4e-03 actionable hypotheses

W298R 0.822 Altered Ordered interface 0.36 2.1e-03 very confident hypotheses

Altered Transmembrane protein 0.12 0.03 confident hypotheses

C227Y 0.87 Altered Disordered interface 0.42 3.2e-03 very confident hypotheses

Altered Ordered interface 0.39 4.0e-04 very confident hypotheses

Altered Metal binding 0.34 9.6e-03 very confident hypotheses

Altered Transmembrane protein 0.31 1.2e-04 very confident hypotheses

Loss of Helix 0.28 0.03 confident hypotheses

C227F 0.888 Altered Metal binding 0.37 7.8e-03 very confident hypotheses

Altered Disordered interface 0.34 0.01 very confident hypotheses

Altered Ordered interface 0.28 4.3e-03 very confident hypotheses

Loss of Helix 0.27 0.04 confident hypotheses

Altered Transmembrane protein 0.26 9.6e-04 very confident hypotheses

L102P 0.735 Altered Disordered interface 0.36 7.6e-03 actionable hypotheses

Gain of Intrinsic disorder 0.34 0.02 actionable hypotheses

Altered Transmembrane protein 0.31 1.1e-04 actionable hypotheses

Loss of Helix 0.31 4.8e-03 actionable hypotheses

Altered DNA binding 0.25 8.9e-03 actionable hypotheses

Altered Stability 0.21 0.01 actionable hypotheses

Loss of Proteolytic cleavage at R99 0.13 0.02 actionable hypotheses

Y142H 0.667 Altered Metal binding 0.78 8.2e-04 actionable hypotheses

Altered Ordered interface 0.44 5.4e-04 actionable hypotheses

Altered Disordered interface 0.35 8.9e-03 actionable hypotheses

Altered Transmembrane protein 0.31 1.1e-04 actionable hypotheses

Gain of Relative solvent accessibility 0.25 0.03 actionable hypotheses

Gain of Acetylation at K145 0.20 0.04 actionable hypotheses

Loss of Methylation at K145 0.17 0.01 actionable hypotheses

Altered Stability 0.17 0.02 actionable hypotheses

Loss of Ubiquitylation at K145 ( 0.15 0.05 actionable hypotheses

Altered Coiled coil 0.10 0.04 actionable hypotheses

Loss of Sulfation at Y147 0.09 3.5e-03 actionable hypotheses
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Table 4 Prediction of functional effects of the most deleterious SNPs on the HLA-G1 by MutPred (Continued)

Isoform 1 (ID: 79bb0a85-d537-4be0-bff8-d0fdb06b5211)

Substitution Mutpred score (>0.50 is
considered pathogenic)

Molecular mechanism with p-value <= 0.05 Probability P-value prediction

C188S 0.795 Altered Disordered interface 0.29 0.03 confident hypotheses

Altered Ordered interface 0.24 0.03 confident hypotheses

Altered DNA binding 0.17 0.03 confident hypotheses

Altered Transmembrane protein 0.09 0.05 confident hypotheses

P259H 0.607 Altered Metal binding 0.47 5.9e-03 actionable hypotheses

Altered Ordered interface 0.28 0.04 actionable hypotheses

Loss of Loop 0.27 0.02 actionable hypotheses

Altered Transmembrane protein 0.20 5.0e-03 actionable hypotheses

Gain of Catalytic site at D262 0.13 0.03 actionable hypotheses

Loss of Proteolytic cleavage at D262 0.13 0.03 actionable hypotheses

W157R 0.936 Altered Ordered interface 0.37 1.8e-03 very confident hypotheses

Altered Transmembrane protein 0.36 1.5e-05 very confident hypotheses

Gain of Relative solvent accessibility 0.33 3.3e-03 very confident hypotheses

Altered Disordered interface 0.30 0.02 confident hypotheses

Loss of Allosteric site at W157 0.30 3.7e-03 very confident hypotheses

Altered Metal binding 0.28 3.8e-03 very confident hypotheses

Altered Coiled coil 0.27 0.01 confident hypotheses

A229D 0.843 Altered Transmembrane protein 0.34 2.4e-05 very confident hypotheses

Altered Metal binding 0.29 0.02 confident hypotheses

Gain of Relative solvent accessibility 0.28 0.02 confident hypotheses

Altered Ordered interface 0.27 9.8e-03 very confident hypotheses

Q96P 0.683 Loss of Helix 0.30 9.0e-03 actionable hypotheses

Altered Transmembrane protein 0.29 3.0e-04 actionable hypotheses

Altered DNA binding 0.25 6.7e-03 actionable hypotheses

Gain of Ubiquitylation at K92 0.15 0.04 actionable hypotheses

Gain of Proteolytic cleavage at R99 0.13 0.02 actionable hypotheses

Loss of Pyrrolidone carboxylic acid at Q96 0.10 0.01 actionable hypotheses

L294R 0.527 Altered Ordered interface 0.27 8.6e-03 actionable hypotheses

D143N 0.649 Altered Metal binding 0.38 1.5e-03 actionable hypotheses

Altered Transmembrane protein 0.28 3.8e-04 actionable hypotheses

Altered Ordered interface 0.28 0.04 actionable hypotheses

Altered Disordered interface 0.28 0.03 actionable hypotheses

Gain of Relative solvent accessibility 0.26 0.03 actionable hypotheses

Loss of Acetylation at K145 0.19 0.05 actionable hypotheses

Loss of Methylation at K145 0.16 0.01 actionable hypotheses

Loss of Ubiquitylation at K145 0.15 0.04 actionable hypotheses

Loss of Sulfation at Y147 0.09 3.4e-03 actionable hypotheses

D143H 0.738 Altered Metal binding 0.43 7.0e-03 actionable hypotheses

Altered Transmembrane protein 0.32 7.8e-05 actionable hypotheses

Altered Disordered interface 0.29 0.03 actionable hypotheses

Altered Ordered interface 0.27 7.0e-03 actionable hypotheses

Loss of Relative solvent accessibility 0.26 0.03 actionable hypotheses
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Table 4 Prediction of functional effects of the most deleterious SNPs on the HLA-G1 by MutPred (Continued)

Isoform 1 (ID: 79bb0a85-d537-4be0-bff8-d0fdb06b5211)

Substitution Mutpred score (>0.50 is
considered pathogenic)

Molecular mechanism with p-value <= 0.05 Probability P-value prediction

Loss of Acetylation at K145 0.19 0.05 actionable hypotheses

Loss of Methylation at K145 0.17 0.01 actionable hypotheses

Loss of Ubiquitylation at K145 0.16 0.03 actionable hypotheses

Loss of Sulfation at Y147 0.09 3.3e-03 actionable hypotheses

R205S 0.617 Gain of Intrinsic disorder 0.34 0.02 actionable hypotheses

Altered Ordered interface 0.29 0.03 actionable hypotheses

Loss of Helix 0.27 0.05 actionable hypotheses

Y51C 0.715 Altered Disordered interface 0.60 1.9e-04 actionable hypotheses

Altered Metal binding 0.53 4.1e-03 actionable hypotheses

Altered Ordered interface 0.30 4.6e-03 actionable hypotheses

Loss of Strand 0.27 0.02 actionable hypotheses

Altered Transmembrane protein 0.20 5.0e-03 actionable hypotheses

Loss of Proteolytic cleavage at D53 0.12 0.03 actionable hypotheses

Altered Stability 0.12 0.03 actionable hypotheses

Gain of Pyrrolidone carboxylic acid at Q56 0.08 0.02 actionable hypotheses

Loss of Sulfation at Y51 0.03 0.02 actionable hypotheses

L196P 0.884 Altered Disordered interface 0.34 0.01 confident hypotheses

Altered Ordered interface 0.27 9.0e-03 very confident hypotheses

Altered DNA binding 0.16 0.04 confident hypotheses

Altered Stability 0.14 0.02 confident hypotheses

D54V 0.718 Altered Metal binding 0.55 3.1e-04 actionable hypotheses

Altered Disordered interface 0.40 4.2e-03 actionable hypotheses

Altered Ordered interface 0.25 0.02 actionable hypotheses

Altered Transmembrane protein 0.14 0.02 actionable hypotheses

Loss of Proteolytic cleavage at D53 0.12 0.03 actionable hypotheses

Gain of Pyrrolidone carboxylic acid at Q56 0.09 0.01 actionable hypotheses

Loss of Sulfation at Y51 0.03 0.02 actionable hypotheses

P234L 0.809 Altered Ordered interface 0.33 1.5e-03 very confident hypotheses

Altered Disordered interface 0.30 0.03 confident hypotheses

Altered Transmembrane protein 0.29 2.0e-04 very confident hypotheses

Loss of Strand 0.28 0.01 confident hypotheses

P39L 0.659 Altered Disordered interface 0.27 0.04 actionable hypotheses

Loss of B-factor 0.26 0.04 actionable hypotheses

Altered Transmembrane protein 0.24 1.6e-03 actionable hypotheses

Altered DNA binding 0.23 9.6e-03 actionable hypotheses

Gain of Proteolytic cleavage at R38 0.14 0.02 actionable hypotheses

M29K 0.720 Altered Ordered interface 0.26 0.02 actionable hypotheses

Loss of Proteolytic cleavage at R30 0.20 2.6e-03 actionable hypotheses

Altered Stability 0.13 0.03 actionable hypotheses

Altered Transmembrane protein 0.12 0.03 actionable hypotheses

Altered Metal binding 0.11 7.9e-03 actionable hypotheses
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Table 4 Prediction of functional effects of the most deleterious SNPs on the HLA-G1 by MutPred (Continued)

Isoform 1 (ID: 79bb0a85-d537-4be0-bff8-d0fdb06b5211)

Substitution Mutpred score (>0.50 is
considered pathogenic)

Molecular mechanism with p-value <= 0.05 Probability P-value prediction

D153G 0.853 Altered Metal binding 0.45 1.6e-04 very confident hypotheses

Altered Disordered interface 0.35 9.1e-03 very confident hypotheses

Loss of Relative solvent accessibility 0.30 8.2e-03 very confident hypotheses

Gain of Strand 0.30 3.1e-03 very confident hypotheses

Altered Transmembrane protein 0.28 4.6e-04 very confident hypotheses

Altered Ordered interface 0.26 0.01 confident hypotheses

Gain of Allosteric site at W157 0.26 7.0e-03 very confident hypotheses

Altered Stability 0.19 0.01 confident hypotheses

Altered Coiled coil 0.10 0.04 confident hypotheses

D130H 0.724 Altered Transmembrane protein 0.30 1.9e-04 actionable hypotheses

Altered Disordered interface 0.28 0.03 actionable hypotheses

Altered Metal binding 0.25 0.03 actionable hypotheses

Loss of Relative solvent accessibility 0.25 0.04 actionable hypotheses

Altered Ordered interface 0.24 0.04 actionable hypotheses

Gain of Disulfide linkage at C125 0.10 0.05 actionable hypotheses

Gain of Catalytic site at D126 0.08 0.05 actionable hypotheses

D244G 0.705 Altered Ordered interface 0.30 0.02 actionable hypotheses

Altered Disordered interface 0.28 0.04 actionable hypotheses

Gain of Strand 0.27 0.02 actionable hypotheses

Altered Transmembrane protein 0.26 8.2e-04 actionable hypotheses

Altered Metal binding 0.18 0.03 actionable hypotheses

Gain of Pyrrolidone carboxylic acid at Q248 0.15 4.6e-03 actionable hypotheses

Loss of Proteolytic cleavage at R243 0.12 0.03 actionable hypotheses

Loss of Catalytic site at R243 0.09 0.04 actionable hypotheses

L105Q 0.507 Altered Disordered interface 0.32 0.01 actionable hypotheses

Gain of Intrinsic disorder 0.30 0.05 actionable hypotheses

Altered Transmembrane protein 0.29 2.1e-04 actionable hypotheses

Altered Ordered interface 0.26 0.01 actionable hypotheses

Altered DNA binding 0.16 0.04 actionable hypotheses

Altered Stability 0.15 0.02 actionable hypotheses

Loss of N-linked glycosylation at N110 0.05 0.02 actionable hypotheses

L105P 0.702 Altered Disordered interface 0.33 0.01 actionable hypotheses

Loss of Helix 0.29 0.01 actionable hypotheses

Altered Transmembrane protein 0.28 3.7e-04 actionable hypotheses

Altered Ordered interface 0.26 0.01 actionable hypotheses

Altered Stability 0.20 0.01 actionable hypotheses

Altered DNA binding 0.16 0.04 actionable hypotheses

Gain of N-linked glycosylation at N110 0.05 0.02 actionable hypotheses

The predictions which are very confident hypotheses shown in bold font
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The inspection of this mutation on HLA-G5 showed the
mutated residue is smaller than the wild-type residue
and this might induce loss of interplays and a further
hydrophobic residue that can lead to loss of hydrogen
bonds and disturb correct confirmation. The negative
charge of the wild-type residue will be lost upon this
mutation and this can lead to loss of interactions with
other molecules or residues. Moreover, the structural
analysis of D153G on HLA-G5 showed this variation is
located inside a cluster of residues annotated in UniProt
as the Alpha-2 domain and can distract this domain and
disturb its function. Glycines are very flexible and can
abolish the needed rigidity of HLA-G5 in this area (sup-
plementary Table 14).

Modeling of protein
I-TASSER tool created the 5 high-quality 3D structures
for each HLA-G isoform from its amino acid sequence.
We submitted the protein sequence of each isoform
without signal peptide as an input to I-TASSER because
there were no most deleterious SNPs in the peptide sig-
nal sequence and removing signal peptide from the pro-
tein sequence can improve the speed of I-TASSER
simulation without loss of modeling accuracy. I-TASSER
used the top 10 templates which are structurally closest
to query protein sequence to model the protein (supple-
mentary Table 17). Among the 5 predicted models for
each HLA-G isoform, the first model was selected be-
cause it had the highest confidence score (C-score) and
it was used for further investigation using Chimera
(Additional file 3). A greater level of C-score indicates a
model with great confidence and conversely.

Chimera software
Chimera viewer was utilized to visualize the structures
of the HLA-G isoforms using the first model as pre-
dicted by I-TASSER (Additional file 4). Furthermore, the
structural characteristics of amino acids in wild and mu-
tant protein chains were visualized by Chimera (Add-
itional file 5 and supplementary Tables 18–20). A
physicochemical rationale may be presented for the im-
pact on protein activity by visualizing the location of the
mutant amino acids [26].

Functional SNPs in UTR predicted by UTRscan tool
The total of the UTR SNPs was investigated by applying
UTRscan. Then analyzing the functional elements for

every UTR SNP, the result showed that rs182801644
was related to the creation of functional pattern of
uORF, and rs771111444 was related to the creation of a
functional patterns of uORF and IRES in 5′UTR
(Table 5). The internal ribosome entry site (IRES) is an
alternative translation initiation mechanism in a cap-
independent process in comparison with the ordinary
5′-cap dependent ribosome scanning mechanism [27].
Upstream open reading frames (uORF) is in the 5’UTR
of mRNA that can regulate eukaryotic gene expression
[28].

The functional SNPs located in 3′UTRs region predicted
by PolymiTRS
3′ untranslated regions (UTR) as the putative target site
for miRNAs is a significant gene expression regulator.
The SNP in the 3′ UTR region may disrupt and/or cre-
ate miRNA target sites. PolymiRTS database predicted
functional SNPs in 3′ UTR of the HLA-G gene. Among
all the SNPs in the 3′UTR region of the HLAG gene, 5
functional SNPs were predicted to affect the miRNA tar-
get sites. The details of the effect of these SNPs on the
miRNA sites are listed in Table 6. Two SNPs,
rs17179101 and rs1063320 disrupt 9 miRNA conserved
sites (ancestral allele with support ≥2), while all of them
produce 15 novel miRNA target sites.

Protein-protein interactions analysis
The mutation may change the structure of a protein and
thus the function of protein may change. Therefore, mu-
tated protein may interact with other proteins and lead to
phenotypic effects. To investigate the interaction of HLA-
G with various proteins, the STRING server was used.
The interaction analysis revealed that HLAG is related to
Beta-2-microglobulin (B2M), Leukocyte immunoglobulin-
like receptor subfamily B member 2 (LILRB2), Leukocyte
immunoglobulin-like receptor subfamily B member 1
(LILRB1), Killer cell immunoglobulin-like receptor 2DL4
(KIR2DL4), HLA class I histocompatibility antigen, alpha
chain F (HLA-F), HLA class I histocompatibility antigen,
A-3 alpha chain (HLA-A), HLA class I histocompatibility
antigen, Cw-7 alpha chain (HLA-C), HLA class I histo-
compatibility antigen, alpha chain E(HLA-E), HLA class I
histocompatibility antigen, B-7 alpha chain (HLA-B), T-
cell surface glycoprotein CD8 alpha chain (CD8A) (Fig. 5).

Table 5 Table of HLA-G UTR SNPs with functional importance that were predicted by UTRscan tool

SNP ID Nucleotide change UTR position Functional element change

rs182801644 C/T 5′ UTR no pattern → uORF

rs771111444 C/G 5′ UTR no pattern → IRES
no pattern → uORF
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The effect of high and low expression levels of HLA-G on
overall survival (OS) in patients with various cancers
Kaplan-Meier plotter was exerted to analyze the prog-
nostic value of the HLA-G gene expression for breast,
ovarian, lung, and gastric cancers by combining gene ex-
pression and cancer patient survival. The subjects were
divided into 2 categories (high or low expression levels)
according to the median expression of HLA-G. Subse-
quently, the correlation of expression levels and cancer
patient’s overall survival rate was evaluated using the
Kaplan-Meier plotter. Hazard ratio (HR) with 95% confi-
dence intervals (CI) and logrank p-value were calculated.
HLA-G gene in breast cancer had a hazard ratio

(HR) = 0.85 (95% CI, 0.69–1.06) and logrank p-value =
0.15; therefore the result was not statistically significant
(HLA-G deregulation had not the prognostic value).
HLA-G gene in ovarian cancer had an HR = 0.81 (95%
CI, 0.71–0.93) and logrank p-value = 0.0023; therefore
the result was statistically significant (the relation be-
tween the high expression of HLA-G gene and more
survival rate). HLA-G gene in lung cancer had a HR =

1.21 (95% CI, 1.07–1.38) and logrank p-value = 0.0029
and in gastric cancer HR = 1.3 (95% CI, 1.09–1.54) and
logrank p-value = 0.0027; therefore the results were sta-
tistically significant (the relation between the low expres-
sion of HLA-G gene and more survival rate) (Fig. 6).
The results showed that HLA-G deregulation has dis-
tinct implications in different types of cancers. This
study shows, the HLA-G deregulation can serve as a
prognostic marker for patients with ovarian, lung, and
gastric cancer but not for breast cancer.

Discussion
A large number of SNPs have been distributed through-
out the human genome. Increasing evidence has sug-
gested that SNPs are important and valuable in the
search for the etiologies of human diseases/traits, the
drug design, and human drug response [29, 30]. But the
large number of SNPs causes a challenge for scientists
because studying all SNPs with molecular approaches to
choose target SNPs is an expensive, time-consuming and
laborious task [29, 31, 32]. A better sense of genetic

Table 6 Prediction results of PolymiRTS database

dbSNP ID miR ID Conservation miRSite FunctionClass

rs1707 hsa-miR-5702 2 CTGACTCctcttt C

hsa-miR-583 3 ctgactCCTCTTT C

rs17179101 hsa-miR-4417 2 AGCCCACccctgt D

hsa-miR-4651 5 agcCCACCCCtgt D

hsa-miR-541-3p 2 aGCCCACCcctgt D

hsa-miR-608 2 agcCCACCCCtgt D

hsa-miR-654-5p 2 aGCCCACCcctgt D

hsa-miR-6756-5p 2 agCCCACCCctgt D

hsa-miR-6766-5p 2 agCCCACCCctgt D

hsa-miR-6782-5p 3 agccCACCCCTgt D

hsa-miR-1587 2 AGCCCAAccctgt C

hsa-miR-296-3p 6 agccCAACCCTgt C

hsa-miR-3147 2 aGCCCAACcctgt C

hsa-miR-3620-5p 2 AGCCCAAccctgt C

hsa-miR-4674 2 AGCCCAAccctgt C

hsa-miR-6823-5p 3 agcccAACCCTGt C

hsa-miR-92a-1-5p 2 agCCCAACCctgt C

rs180827037 hsa-miR-875-3p 5 tttcctTTTCCAG C

rs138249160 hsa-miR-25-5p 2 tCTCCGCCtctgt C

hsa-miR-6087 3 tctCCGCCTCtgt C

rs1063320 hsa-miR-3619-3p 3 tgTGGTCCActga C

hsa-miR-4776-5p 3 tgTGGTCCActga C

hsa-miR-4800-5p 3 tgtGGTCCACtga C

hsa-miR-767-5p 3 tgTGGTGCActga D

In miRsite, sequences of the miRNA sites were shown. The capital letters show bases complementary to the seed region and SNPs were shown in bold font.
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variations in susceptibility to disease and their pheno-
typic effects and reducing the number of them that
should be screened in molecular studies may be pro-
vided by applying in silico methods [26, 33]. Among
SNPs, missense SNPs are correlated with single amino
acid substitution in the coded protein as a result of sin-
gle nucleotide change in a codon that may have an in-
tense impact on the structure and functionality of the
relevant protein [4]. There is considerable data about
SNPs in the dbSNP/NCBI database [34]. There were 301
missense mutations in the coding region of human
HLA-G gene and in this study we focused on them in
order to identify the most deleterious missense muta-
tions that could modify the structure and function of the
HLA-G isoforms. Identification of functional missense
mutations and their role(s) may allow an individualized
method for therapeutic goals [10]. HLA-G acts as an im-
mune tolerogenic molecule, playing a role in various
pathologies [10]. HLA-G primary mRNA is spliced into
seven alternative mRNAs that encode 7 different iso-
forms of HLA-G protein: four membrane-bound (HLA-
G1 to G4) and three soluble (HLA-G5 to G7) protein
isoforms [35]. Full-length HLA-G protein exhibits a

heavy chain consisting of α1 (residues 25 to 114), α2
(residues 115 to 206) and α3 (residues 207 to 298) do-
mains and a light chain (B2M) [15, 36].
The HLA-Gl isoform consists of α1, α2 and α3 do-

mains, transmembrane and cytoplasmic regions. The
HLA-G2 isoform lacks the α2 domain. The HLA-G3 iso-
form does not comprise both the α2 and α3 domains.
The HLA-G4 isoform lacks the α3 domain. The HLA-
G5 isoform comprises the α1, α2 and α3 domains and
lacks transmembrane and cytoplasmic domains as a re-
sult of intron 4 retention and encoding a C-terminal
peptide sequence of twenty-one amino acid residues.
HLA-G6 comprises α1 and α3 domains plus a C-
terminal peptide sequence of twenty-one amino acid res-
idues encoded by intron 4 retention and lacks trans-
membrane and cytoplasmic domains. The HLA-G7
isoform has only the α1 domain and lacks transmem-
brane and cytoplasmic domains as a result of intron 2
retention and encoding a C-terminal peptide sequence
of two amino acid residues. All of these isoforms com-
prise α1 domain [36].
HLA-G expression has been widely studied in various

disorders; nevertheless, the HLA-G gene polymorphism

Fig. 5 Protein–protein interaction network of HLAG with 10 partners
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has not been evaluated to the same extent [10]. On the
other hand, nearly half of the known gene-related dam-
ages for human hereditary diseases are amino acid sub-
stitutions. Consequently, screening of polymorphisms
using in silico analyses to identify missense SNPs that
affect the function of the protein and that are associated
with the disease is an important task [29]. Therefore, in
the present study, an attempt was made to predict the
functional missense SNPs in human HLA-G isoforms.
301 missense SNPs of the human HLA-G gene were re-
trieved from dbSNP and were submitted to in silico
tools to predict the functionally important missense
SNPs in HLA-G1 and HLA-G5 and the common most
deleterious missense SNPs in membrane-bound isoforms
and in the soluble isoforms.
Existing in silico methods have diverse strengths and

weaknesses in predicting the effect of nsSNP because
every algorithm uses different parameters for prediction
[37, 38]. Therefore, algorithms individually could not be
considered as an accurate method for the prediction of

functional SNPs [39]. In consequence, screening and pri-
oritizing the candidate functional nsSNPs requires the
implementation of different algorithms with different pa-
rameters and aspects (e.g. based on evolutionary infor-
mation and protein structure and/or functional
parameters) to combine the advantages of different
methods, to enhance the accuracy and reliability of the
predictions and to minimize the errors [5, 39–41]. As a
general rule, in each study, at least four or five of these
tools should be run to obtain a consensus on the effect
of single nucleotide polymorphism on the structure and
function of the desired protein [37]. In the current inves-
tigation, 8 different prediction algorithms were used as
follows: SIFT, PROVEAN, PolyPhen-2, I-Mutant 3.0,
SNPs&GO, PhD-SNP, SNAP2 and MUpro for the pre-
diction of deleterious missense SNPs present in HLA-G
isoforms. SIFT, PROVEAN, PhD SNP and SNP&GO
tools predict damaging SNPs based only on the sequence
of a protein. PolyPhen-2 and SNAP2 tools predict the
functional effects of mutations based on the combination

Fig. 6 The correlation of deregulation of HLA-G gene and overall survival rate of the cancer patients was evaluated using Kaplan-Meier plotter
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of protein 3D structure and multiple homolog sequence
alignment [37]. I-Mutant 3.0 and MUPro tools investi-
gate the effect of candidate SNPs on protein stability
[41]. In our analyses, 35 missense substitutions of all the
SNPs in HLA-G 1 isoform were predicted to be most
deleterious SNPs by all the programs used. These 35
missense substitutions were classified according to the
domain where they were located. Nine (25.71%)
substitutions (rs555347515, rs572025435, rs1475659109,
rs1390270595, rs763201540, rs1414848134, rs1260
086927, rs770412396, rs1161818149) are located in the
α1 domain, 11 (31.42%) substitutions (rs17851921, rs5
65858069, rs749006959, rs772834879, rs1317292772,
rs556645753, rs867319917, rs748013931, rs780697086,
rs1397132797, rs1379742188) are detected in the α2
domain and 15 (42.85%) substitutions (rs144577485, rs1
472538844, rs770027530, rs1200732770, rs1430565057,
rs142596947, rs750238738, rs754527717, rs781774818,
rs760500349, rs756652306, rs145097667, rs111233577,
rs1265409678, rs765275727) are located in the α3 do-
main. Thirty-five missense SNPs were found to be the
most deleterious on the stability and function of HLA-G
5 isoform. Twelve (34.28%) substitutions (rs555347515,
rs572025435, rs540632198, rs1475659109, rs1390270595,
rs763201540, rs1414848134, rs138289952, rs1260086927,
rs770412396, rs1161818149, rs776393668) are located in
the α1 domain, 12 (34.28%) substitutions (rs17851921,
rs565858069, rs749006959, rs772834879, rs1317292772,
rs556645753, rs867319917, rs748013931, rs780697086,
rs1397132797, rs1438362414, rs1379742188) are sited in
the α2 domain and 11 (31.42%) substitutions
(rs144577485, rs1472538844, rs770027530, rs120073
2770, rs1430565057, rs142596947, rs750238738, rs78
1774818, rs760500349, rs145097667, rs765275727) are
located in the α3 domain. Eight missense mutations in
the α1 domain with positions M29K, R30S, Y51C,
D53N/Y, D54V, Q96P, L102P and L105Q/P among all
membrane-bound HLA-G isoforms and with positions
M29K, F32C, Y51C, D53N/Y, D54V, Q96P, L102P,
L105P between all soluble HLA-G isoforms were pre-
dicted as common deleterious missense mutations.
Evidence indicates that all three domains of the heavy

chain of HLA-G molecule are involved in inhibiting im-
mune response through interactions with other mole-
cules, for instance, the α1 domain is an important
KIR2DL4 recognition site and the LILRB1, LILRB2 and
CD8 molecules interact with the α 3 domain. Nucleotide
variations in these domains may affect the function of
the HLA-G molecule. For example, the mutations
around domain α1 and α2 affect peptide loading, peptide
diversity, and T-cell recognition [10, 15, 42].
In this study, the selected variations were further investi-

gated by other servers. For the rational prioritization of
the selected most deleterious SNPs for further studies, an

analysis of the evolutionary conservation of selected mis-
sense mutations was performed by ConSurf. The amino
acids at the conserved regions of protein across species
are biologically and functionally very important and SNPs
that alter these amino acids may lead to structural and
functional changes in the protein [29, 31]. We have shown
that the selected deleterious SNPs in HLA-G1, HLA-G5,
the membrane isoforms and the soluble isoforms were
mostly in conserved positions and were functional and
structural residues, which indicate these SNPs can be dele-
terious. The MutPred2 web-server predicted the possible
molecular mechanisms that result from selected deleteri-
ous missense SNPs. The majority of the selected deleteri-
ous SNPs were predicted as ‘pathogenic’ (a g score greater
than 0.5) and they are depicted as actionable, confident,
and very confident hypotheses based on the g score and p
score. The most predicted effects of very confident hypoth-
eses in HLA-G1 and HLA-G5 were altered transmembrane
protein and altered ordered interface. There was not any
common predicted effect as very confident hypothesis
among all of the membrane-bound HLA-G isoforms. The
common predicted effect as very confident hypothesis
among all of the soluble HLA-G isoforms was altered or-
dered interface resulting from F32C substitution. HOPE in-
vestigated the structural effects of the selected deleterious
missense SNPs in HLA-G isoforms. The results revealed
that nsSNPs are located in each of the three domains (α1, α2
and α3) of HLA-G. Since the function of any protein de-
pends straightly on its tertiary structure, the modification in
the structure of the domain can disrupt its function. The na-
tive protein 3D structures are very necessary for better un-
derstanding of the functional and structural effect of
mutations. In the present study, because the 3D structure of
all HLA-G isoforms is not available yet in the PDB database
[43]; 3D structural models of native HLA-G isoforms were
constructed by I-Tasser server and were visualized using
Chimera software. Further, Chimera software was used to
visualize the structural consequences of amino acid changes.
The HLA-G promoter region is special in the class of

the HLA genes. The 5′ UTR and 3′ UTR regions of
HLA-G gene display many polymorphic sites that may
affect HLA-G expression and therefore tissue distribu-
tion in healthy and pathological conditions [10]. UTRs-
can analyzed the 5′ and 3′ UTR SNPs of the HLA-G
gene. Two SNPs in the 5′ UTR were determined to cre-
ate the functional patterns. The rs182801644 was related
to creation of the functional pattern of uORF and
rs771111444 was related to creation of the functional
patterns of uORF and IRES in 5′UTR. The creation of
uORF due to SNPs can deregulate the downstream ori-
ginal ORF expression and therefore be the cause of
pathological conditions [44]. Furthermore, the presence
of new IRES due to SNPs affects the regulation of
mRNA translation [45]. To better understand the
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consequences of these UTR SNPs, investigation at the
functional levels is needed.
PolymiRTS predicted that 5 functional SNPs are

present in the HLA-G mRNA 3′ UTR, two of which
them disrupt 9 target sites of the miRNA and all five
SNPs create 15 new miRNA target sites. MicroRNAs
play an important role in translation regulation. Thus
disrupting or creating the microRNA target sites influ-
ences the regulation of gene and may lead to patho-
logical conditions [10].
STRING analysis is a global way to understand

protein-protein interactions. Any change in protein
structure and function can affect its ability to interact
with other molecules. STRING map showed the
interaction of HLA-G with 10 different proteins. Some
experimental studies confirm the interaction of HLA-G
with these predicted proteins [9, 10, 14, 15, 17, 18,
46–53].
Lastly, the outcomes obtained from Kaplan Meier

bioinformatics analyses indicated that the HLA-G gene
deregulation affected the overall survival rate of patients
with ovarian, lung and gastric cancer and had the prog-
nostic significance. However, there are some controver-
sies in relation to published original studies as presented
in Table 7.
Altogether, the findings of the analyses displayed prob-

able alterations that may disrupt the structure and func-
tion of HLA-G protein. The deleterious missense
mutations determined in this inspection may have func-
tional effects in HLA-G deregulation and may lead to
pathological conditions like cancer.

Conclusion
The implementation of in silico SNP prioritization
methods suggests a remarkable framework for the recog-
nition of functional SNPs by reducing the number of al-
terations that should be screened in molecular studies.
Further validation of the results obtained from the
current study is recommended using clinical and/or la-
boratory investigations.

Methods
Extracting SNPs and protein sequences of HLA-G isoforms
from the databases
In December 2018, NCBI dbSNP database [74] (https://
www.ncbi.nlm.nih.gov/snp/) was used to collect informa-
tion of missense nsSNPs and SNPs in the UTRs of
human HLA-G gene. The amino acid sequences of seven
human HLA-G isoforms (UniProt ID: P17693–1,
P17693–2, P17693–3, P17693–4, P17693–5, P17693–6
and P17693–7) were obtained from the UniProt data-
base [75] (https://www.uniprot.org/uniprot/P17693) in
FASTA format for the next stages in this study.

Predicting the most deleterious missense nsSNPs
We used eight online bioinformatics tools (SIFT, PRO-
VEAN, PolyPhen-2, I-Mutant 3.0, SNPs&GO, PhD-SNP,
SNAP2 and MUpro) to increase the precision of predic-
tion of the most deleterious missense nsSNPs. Missense
nsSNPs found to be most deleterious using these eight
tools were further analyzed by several other programs in
the next stages.
Sorting intolerant from tolerant (SIFT) [76] (available

at https://sift.bii.a-star.edu.sg/) tool expresses whether a
missense mutation at special position effects on the
structure and function of protein molecule based on se-
quence homology and the physiochemical characteristics
of substituted amino acid. SIFT computes the normal-
ized probability score (SIFT score) for each substitution.
The SIFT score has a range of 0.0 to 1.0. The amino acid
substitution with a score greater than or equal to 0.05
(≥0.05) is predicted as tolerated (polymorphism) whereas
a score less than 0.05 (< 0.05) is predicted to be dam-
aging (related to disease).
Protein Variation Effect Analyzer (PROVEAN) (avail-

able at provean.jcvi.org/) is another sequence homology-
based predictor. It is used to assess the possible func-
tional influence of nonsynonymous (single or multiple
nonsynonymous) and in-frame indel (insertions and de-
letions) variations on a protein. It predicts the variation
as deleterious or natural, if the functional impact score
is less than or equal to − 2.5 (≤ − 2.5) it is estimated
deleterious; score above − 2.5 (> − 2.5) is estimated neu-
tral [77].
Polymorphism Phenotyping version2 (PolyPhen-2)

(available at genetics.bwh.harvard.edu/pph2/) is a com-
bination of protein 3D structure and multiple homolog
sequence alignment-based method. It predicts the poten-
tial consequences of single amino acid substitution on
both protein function and structure. The prediction is
provided as benign, possibly damaging and probably
damaging according to the position-specific independent
count (PSIC) scores difference between 2 variants (wild
amino acid (aa1) and mutant amino acid (aa2)). PSIC
score has a range of 0.0 to 1.0. The amino acid substitu-
tion with a score of 0.0 to 0.49 is predicted as benign,
with a score of 0.5 to 0.89 is predicted as damaging and
with a score of 0.9 to 1 is predicted as probably dam-
aging [78, 79].
I-Mutant 3.0 (available at gpcr2.biocomp.unibo.it/cgi/

predictors/I-Mutant3.0/I-Mutant3.0.cgi) is a web server
including Support Vector Machine (SVM) based predic-
tors suite. It predicts the effect of a particular amino acid
substitution on the stability of protein under default pa-
rameters (at room temperature and neutral pH) starting
from the protein sequence, mutational position and the
corresponding novel residue. The protein stability
change can disturb both protein function and structure
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Table 7 The correlation of deregulation of HLA-G gene and overall survival rate of the cancer patients as reported by previous
studies in comparison with our results

Type of
cancer

Results found in our study Results found in some previous studies Controversy Reference

Breast
Cancer

HLA-G gene in breast cancer had a hazard ratio (HR) =
0.85 (95%CI, 0.69 − 1.06) and log-rank p-value= 0.15;
therefore the result was not statistically significant.

In the whole cohort of patients, HLA-G showed no
statistically significant difference in outcome between
expression versus no expression for overall survival
(P = 0.74).

No [54]

Breast cancer patients with positive HLA-G expression
had a lower survival rate in comparison with negative
HLA-G expression patients (P = 0.028).

Yes [55]

HLA-G upregulated expression was confirmed in breast
cancer. HLA-G was associated with both improved
relapse-free survival and overall survival.

Yes [56]

The expression of HLA-G was significantly higher in
invasive ductal breast cancer patients with shorter
survival time (P = 0.03).

Yes [57]

Breast cancer patients with HLA-G-positive tumor cells
had shorter disease-free survival, though not
significantly (P = 0.14).

No [58]

Ovarian
Cancer

The relation between the high expression of HLA-G
gene and more survival rate was statistically significant
(less number of patients at risk) (HR = 0.81 (95%CI, 0.71
− 0.93) and log-rank p-value= 0.0023)

Ovarian cancer patients with HLA-G expression >17%
showed poor survival than those with HLA-G expression
<17% group with a P value of 0.04.

Yes [59]

The HLA-G5/-G6 was expressed in 79.7% (94/118) of
ovarian cancer lesions. lesion HLA-G5/-G6 expression
was unrelated to clinicoparameters including
histological type, patient age, FIGO stages and patient
survival.

Yes [60]

Survival was prolonged when ovarian tumors expressed
HLA-G (P = 0.008) and HLA-G was an independent
predictor for better survival (P = 0.011). Furthermore,
longer progression-free survival (P = 0.036) and
response to chemotherapy (P = 0.014) was correlated
with expression of HLA-G.

No [61]

The Kaplan-Meier analysis demonstrated no significant
association between survival and HLA-G expression
status in ovarian carcinoma patients.

Yes [62]

Lung
cancer

HLA-G gene in lung cancer had a HR = 1.21 (95%CI,
1.07 − 1.38) and log-rank p-value= 0.0029; therefore the
result was statistically significant (the relation between
the low expression of HLA-G gene and more survival
rate)

The Higher sHLA-G level above the median (≥50 U/ml)
in patients is associated with statistically significant
shorter survival time in comparison to the lower sHLA-G
expression (P < 0.0001).

No [63]

sHLA-G expression was observed in 34.0% (45/131) of
the NSCLC lesions, which was unrelated to patient
survival.

Yes [64]

Plasma sHLA-G above the median level (≥median, 32.0
U/ml) in NSCLC patients is strongly associated with
shorter survival time (P = 0.044).

No [65]

Patients with sHLA-G <40 ng/ml (p = 0.073) showed
prolonged overall survival.

No [66]

Patients with HLA-G positive tumors had a significantly
shorter survival time than those with tumors that were
HLA-G negative (P = 0.001).

No [67]

Survival analyses were shown that the HLA class I loss
was correlated to recurrence-free survival time.

No [68]

Gastric carcinoma patients with HLA-G positive tumors
had a significantly shorter survival time than those
patients with tumors that were HLA-G negative (P =
.001).

No [69]
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[80]. I-Mutant 3.0 predicts the protein stability change
in the unit of change in Gibbs free energy (ΔΔG or
DDG). The DDG value (kcal/mol) is computed from the
unfolding Gibbs free energy value of the mutant protein
minus the unfolding Gibbs free energy value of native
protein. The prediction is classified into three categories:
neutral stability of the mutated protein (− 0.5 ≤DDG ≤
0.5 kcal/mol), a large decrease of stability of the mutated
protein (≤ − 0.5 kcal/mol) and large increase of stability of
the mutated protein (> 0.5 kcal/mol) [81].
Single Nucleotide Polymorphism Database (SNPs) & Gene

Ontology (GO) (SNPs&GO) (available at snps.biofold.org/
snps-and-go/snps-and-go.html) is a GO-integrated and sin-
gle SVM-based predictor. It predicts whether an amino acid
substitution is disease-associated or not using functional GO
terms, 3D protein structure and protein sequence evolu-
tionary information. The amino acid substitution is associ-
ated with the disease if the probability score is greater
than 0.5 (> 0.5) [82].
Predictor of human Deleterious Single Nucleotide

Polymorphisms (PhD-SNP) (available at snps.biofold.
org/phd-snp/phd-snp.html) is a support vector ma-
chine (SVM) based server. This server determines
whether a certain amino acid substitution is related
to disease or neutral by protein sequence information,
protein structure, conservation and solvent accessibil-
ity. The output is a probability index with a score of
0.0 to 1.0, when the score is higher than 0.5, the
substituted amino acid is pathogenic [77, 81].
Screening for Non-Acceptable Polymorphisms (SNAP2)

(available at https://rostlab.org/services/snap/) is a neural
network-based tool that classifies amino acid substitutions
into effective and neutral on protein function by taking a
diversity of sequences and different characteristics into
consideration. SNAP2 provides a list of all possible substi-
tutions within the protein sequence with a score, func-
tional effect (neutral or effect) and expected accuracy for

any replacement. The expected accuracy shows the level
of confidence for each prediction. The results are also dis-
played in heat map representation [83–85].
MUpro (available at mupro.proteomics.ics.uci.edu/)

uses the Support Vector Machine (SVM) to assess the
variation in the stability of the protein consequent to
amino acid substitutions. The output is a confidence
score among − 1 and 1. A confidence score < 0 indicates
the substituted amino acid decreases the stability and a
score > 0 indicates the substituted amino acid increases
the stability [86].

Selecting the most deleterious missense nsSNPs for
further study
Missense nsSNPs that were predicted deleterious by all
eight servers were selected for further study. The preci-
sion of prediction increases to a greater extent by in-
corporating the scores of all eight servers.

Predicting the evolutionary conservation of the most
deleterious missense nsSNPs by ConSurf
ConSurf web-server (available at consurf.tau.ac.il/) esti-
mates the evolutionary conservation of each residue in a
protein utilizing a Bayesian algorithm which often pro-
vides the possibility of identifying key structural and
functional residues. The extent of conservation of resi-
due at a specific position in a protein was computed by
phylogenetic information of close homologous se-
quences. The measure of residue conservation is shown
by the conservation score along with the color scheme
as follows: 1–4 variable, 5–6 average, and 7–9 conserved.
The ConSurf web - server also determines the buried (b)
or exposed (e) residues of protein according to the
HHPred 3D model. A residue is predicted functional
residue if it is very conserved and exposed and a struc-
tural residue is predicted if it is very conserved and bur-
ied [87, 88].

Table 7 The correlation of deregulation of HLA-G gene and overall survival rate of the cancer patients as reported by previous
studies in comparison with our results (Continued)
Type of
cancer

Results found in our study Results found in some previous studies Controversy Reference

Gastric
cancer

HLA-G gene in gastric cancer had a HR = 1.3 (95%CI,
1.09 − 1.54) and log-rank p-value= 0.0027; therefore the
result was statistically significant (the relation between
the low expression of HLA-G gene and more survival
rate.

Kaplan-Meier analyses indicated that patients with HLA-
G-positive gastric cancer had a poorer prognosis than
those with HLA-G negative gastric cancer (P = 0.008).

No [70]

The overall median survival was worse in gastric
adenocarcinoma patients with HLA-G-positive tumors
compared to those with HLA-G-negative tumors
(p < 0.0001).

No [71]

Kaplan–Meier analysis showed that gastric cancer
patients with HLA-G expression had a significantly
poorer overall survival than those without HLA-G
expression at 5 years after the operation.

No [72]

The 5-year survival rate of gastric cancer patients in the
HLA-G-positive group was significantly higher than the
HLA-G-negative group.

Yes [73]
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Studying the most deleterious missense nsSNPs by
MutPred2 server
MutPred is a bioinformatics web server (available at
mutpred.mutdb.org/). It predicts whether a particular
missense mutation in a human protein is disease-
associated or not, along with its structural and func-
tional effects (effective molecular characteristics). The
result of MutPred consists of two important scores (gen-
eral (g) score and top 5 molecular properties score (p)),
affected PROSITE and ELM motifs and changes of dif-
ferent structural and functional properties. The g score
(MutPred score) expresses the probability that the mis-
sense mutation is disease-related. The g score is between
0.0 and 1.0. The g score > 0.5 means the substituted
amino acid is probably pathogenic and if g score is >
0.75, the mutation is more assurance pathogenic. The
top 5 molecular properties score (p) is a P-value that in-
dicates whether predicted changes of functional and
structural characteristics of the protein due to the par-
ticular missense mutation are statistically significant.
The predicted change is confident if p-value is less than
0.05 (< 0.05) and is very confident if p-value is less than
0.01 (< 0.01). The given coalescences of high levels of g
scores and low levels of p scores are called hypotheses.
Any prediction according to the scores is put in one of
these 3 groups: very confident hypotheses (g > 0.75 and
p < 0.01), confident hypotheses (g > 0.75 and p < 0.05)
and actionable hypotheses (g > 0.5 and p < 0.05 [89, 90].

Analyzing the effects of the most deleterious missense
SNPs on the 3D structure of the HLA-G isoforms by HOPE
project
Project Have yOur Protein Explained (HOPE) is a web
server (available at www.cmbi.ru.nl/hope/) that was used
for the investigation of the impacts of a missense muta-
tion on the native protein structure. HOPE will roll up
and incorporate available information from UniProtKB,
protein’s 3D structure and DAS-servers. As regards the
exact 3D-structures of some HLA-G protein isoforms
are unknown; HOPE built the model of them based on
homologous structures. HOPE processes the gathered
data and produces a report, including schematic struc-
tures of the wild-type and the mutant amino acids, dif-
ferences in the properties of wild-type and mutant
amino acids and the impacts of a substituted amino acid
on the protein structure along with figures and anima-
tions [91].

Simulating the three-dimensional (3D) structure of HLA-G
isoforms by I-TASSER
To investigate the impact of missense mutations on the
structure protein, simulating the protein structure is es-
sential. Iterative Threading ASSEmbly Refinement (I-
TASSER) (available at https://zhanglab.ccmb.med.umich.

edu/I-TASSER/) is a united program to create the
complete protein model and predict protein function
based upon the sequence-to-structure-to-function para-
digm. Therefore, we used I-TASSER to achieve the high-
quality three-dimensional (3D) models of HLA-G pro-
tein isoforms by submitting their amino acid sequences
in FASTA format. The models are created by excising
continuous fragments from threading alignments and it-
erative structural assembly simulations and their func-
tions are derived by matching the 3D models with other
known proteins structurally. I-TASSER produces a re-
port, including predicted secondary and tertiary struc-
tures, functional annotations and Gene Ontology terms.
The accuracy of predicted models is reflected in the
form of the confidence score (C-score). The C-score
range is between − 5 and 2. The more values of C-score
display higher confidence for the predicted model. Five
three-dimensional (3D) models were created for each
HLA-G protein isoform and the best model was selected
according to C-score values [92, 93].

Analyzing changes in HLA-G isoforms 3D structure due to
amino acid substitution by UCSF chimera
UCSF Chimera is a program for molecular visualization,
molecular structures study and related data (available at
https://www.cgl.ucsf.edu/chimera/). The structures of
the HLA-G isoforms predicted with I-TASSER in PDB
formatted structure files were visualized by Chimera.
Chimera was also used to achieve the 3D mutated
models of the wild models of HLA-G isoforms with the
most deleterious missense SNPs predicted in this pro-
ject. The outputs are graphical models [94].

Founding functional SNPs in UTR by the UTRscan
(available at http://itbtools.ba.itb.cnr.it/utrscan)
This tool is for scrutinizing UTR functional elements
throughout user-submitted sequence data for any of the
patterns collected in the UTRsite and UTR databases.
UTRsite is a pile of functional sequence patterns found in
5ˊ and 3ˊ UTR sequences. If two or three sequences of
each particular UTR SNP are concluded to have various
functional patterns, specific UTR SNP is determined to
have functional significance [95].

PolymiRTS database 3.0 (polymorphism in microRNAs and
their target sites) (available at compbio.uthsc.edu/
miRSNP/)
PolymiRTS is a database to analyze the 3’UTR regions of
mRNAs in Homo sapiens and mouse for SNPs and
INDELs variations in microRNA target sites. The poly-
morphisms of microRNA target sites may alter miRNA-
mRNA interactions and accordingly gene expressions.
The variations are divided into four categories according
to their effect: “D” (the derived allele disrupts a
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conserved miRNA site), “N” (the derived allele disrupts a
nonconserved miRNA site), “C” (the derived allele cre-
ates a new miRNA site) and “O” (the ancestral allele
cannot be determined). “D” and “C” groups are most
likely to have functional effects because they may lead to
loss of normal repression and abnormal gene repression
control, respectively. We submitted the HLA-G gene
symbol to the program and the analysis was performed
automatically on the transcript variant 2 (transcript ID:
NM_002127) and functional SNPs were determined [96].

Predicting protein-protein interactions by search tool for
the retrieval of interacting proteins (STRING) (available at
http://string-db.org/)
STRING is a database of protein-protein interactions.
The database contains data from empirical evidences,
computational prediction tools and collections of univer-
sal text. This provided availability to both experimental
and theoretical interaction data of HLA-G [97, 98].

Kaplan-Meier plotter analysis (KM plotter) (available at
https://kmplot.com/analysis/)
The Kaplan Meier plotter is a tool to evaluate the impact
of 54,000 genes on survival in 21 types of cancer using
the microarray gene expression data. A meta-analysis
based detection and validation of biomarkers for cancer
patients is the primary aim of Kaplan-Meier. The
211528_x_at probe was used for HLA-G gene. Here, the
overall survival (OS) is the period of time from the start
of a change in specific gene expression (decrease or in-
crease expression) for a cancer, that patients diagnosed
with it are still alive. The expression in patients for each
cancer was graded and allocated high and low expres-
sion groups according to the median level. The overall
survival analysis was performed on 1402 cases of breast
cancer, 1656 cases of ovarian cancer, 1926 cases of lung
cancer and 876 cases of gastric cancer. These two groups
of patients for cancer listed above were compared and
the survival was evaluated. The p-values less than 0.05
were regarded as statistically significant [99–102].
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