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Abstract

Background: Information on population structure and genetic diversity of germplasm in a breeding programme is
useful because it enhances judicious utilisation of genetic resources to achieve breeding objectives. Seventy early
maturing provitamin A (PVA) quality protein maize (QPM) inbreds developed by the IITA- maize improvement
programme were genotyped using 8171 DArTseq markers. Furthermore, 96 hybrids derived from 24 selected
inbreds plus four checks were evaluated under low-N and optimal environments in Nigeria during 2016 and 2017.
Genotypic and phenotypic data of inbreds and hybrids respectively, were analysed to (i) assess the level of genetic
dissimilarities and population structure of the inbreds, and (i) investigate the grain yield performance of derived
hybrids under low-N, optimal and across environments.

Results: Genetic diversity among the seventy inbreds was high varying from 0.042 to 0.500 with an average
of 0.357. Sixty-six inbred lines with probabilities 20.70 were assigned to a single group. The population
structure analysis, the UPGMA phylogeny, and the principal Coordinate Analysis (PCoA) of the DArTseq
markers revealed a clear separation of five groups and each followed pedigree records. Clustered inbreds
displayed common characteristics including high PVA levels, and drought and low-N tolerance. The top
performing hybrid, TZEIORQ 40 x TZEIORQ 26 out-yielded the best hybrid control, TZEIOR 127 x TZEIOR 57 by
8, 3, and 9% under low-N, optimal, and across environments, respectively. High repeatability estimates were
detected for grain yield under each and across environments. Similarly, high breeding efficiency of 71, 70 and
72% were computed under low-N, optimal, and across environments, respectively.
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Hybrids, Zea mays L.

Conclusions: The UPGMA clustering, the structure analysis, and the PCoA consistently revealed five groups which
largely followed pedigree information indicating the existence of genetically distinct groups in the inbred lines. High
repeatability and breeding efficiency values estimated for grain yield of hybrids under low-N, optimal and across
environments demonstrated that high productive hybrids could be developed using inbreds from the opposing
clusters identified by the DArTseq markers. The 15 top performing hybrids identified, particularly TZEIORQ 40 X
TZEIORQ 26 and TZEIORQ 29 x TZEIORQ 43 should be further evaluated for release and commercialization in SSA.

Keywords: Genetic diversity, DArTseq markers, Provitamin A, Quality protein maize, Low-N tolerance, Inbred lines,

Background

In plant breeding programmes, information on the
genetic variation of germplasm is important because it
facilitates judicious utilisation of resources to achieve
breeding objectives. Genetic diversity in maize has
always been exploited to select diverse parents to
maximize heterosis in hybrids. Maize as an out-crossing
species has a complex genome [1] with a high degree of
genetic variability which is advantageous to the breeder
in achieving high heterosis [2]. Semagn et al. [3] demon-
strated that high genetic variation in a source population
could enhance the development of useful inbred lines to
aid the identification of best parental combinations for
the development of superior hybrids. Studies have
revealed tremendous variability among tropical maize
germplasm. Zhang et al. [4] and Dao et al. [5] estimated
gene diversity among tropical and temperate maize pop-
ulations and found more diversity in the tropical than
the temperate germplasm. The early maturing (90-95
days to physiological maturity) provitamin A (PVA)-
quality protein maize (QPM) inbreds are novel tropical
lines developed by the IITA-maize improvement
programme with genes from diverse sources for PVA,
quality protein, Striga resistance, and drought and low
soil nitrogen tolerance. Assessment of the extent of gen-
etic variability among the recently developed inbred lines
would be useful in providing invaluable information to
guide breeding strategies and facilitate progress in the
development of hybrids and synthetics with combined
drought and low-N tolerance, and high levels of PVA,
tryptophan and lysine contents which are presently lack-
ing in SSA. Maize production in SSA mostly occurs
under low-N environments [6] by resource poor farmers
who continuously crop maize with limited or no use of
N fertilizer. During the past three decades, low-N has
remained a great challenge to maize production and
productivity in SSA resulting in about 10 to 50% loss of
maize annually [7]. Therefore, the development and use
of improved maize hybrids with tolerance to low-N con-
ditions would contribute to superior grain yield potential
in areas prone to low-N stress [8]. However, in the iden-
tification of low-N tolerant genotypes, the evaluations

should be carried out under both low-N and favourable
environments to accelerate gains from selection [9]. This
approach enhances the identification of agronomically
desirable genotypes that can give appreciable yield under
low-N and maintain superior yield potential under
favourable growing conditions. Moreover, heterosis
could be maximized if the parental inbred lines involved
in the hybrid combinations have varying genetic back-
grounds [10]. It was therefore imperative to investigate
the genetic backgrounds of the inbred lines in the
present study using the Diversity Array Technology
(DArT) which employs the Next Generation Sequencing
(NGS) platform (DArTseq) [3, 11, 12] to provide high-
density and cost-effective whole genome genotyping.
Although, the DArTseq technique involves several steps
in its delivery, it was the method of choice because it
has the ability to provide genome profiles which are very
useful for characterization of germplasm collections as
well as reliable and precise phenotyping. The presumed
genetic differences in the inbred lines coupled with
natural genetic variability associated with tropical maize
germplasm [4, 5] which could facilitate genetic improve-
ment necessitated the assessment of the genetic diversity
of the newly developed early maturing PVA-QPM inbred
lines to ensure increased rate of genetic gain in derived
hybrids. Thus, the present study was designed to (i)
assess the genetic dissimilarities among the inbred lines
using high-density DArTseq markers, (ii) examine the
genetic structure of the inbred lines to maximize
heterosis in hybrid combinations and (iii) investigate the
performance of derived hybrids for grain yield and other
agronomic traits under low-N, optimal and across
environments.

Results

Summary statistics and phylogeny of inbred lines

In the subset of 8171 SNP-based DArTseq markers,
changes in base pairs were A/C (892), A/G (2322), A/T
(815), C/G (963), G/T (2278) and C/T (901). Among the
polymorphic SNPs, the A/G and G/T transitions consti-
tuted the most informative which accounted for 28.4
and 27.9%, respectively. Gene diversity ranged from
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0.042 to 0.500 with a mean of 0.357 (Fig. 1). A similar
trend was observed for the PIC values which varied from
0.041 to 0.375 with a mean of 0.287. Heterozygous indi-
viduals identified per marker varied from 0.000 to 0.929
with a mean of 0.056. About 73% of the informative
SNPs identified over 95% homozygous individuals. Major
allele frequency ranged from 0.500 to 0.978 with a mean
of 0.74. The genetic distance generated among the 70
inbred lines ranged from 0.018 to 0.455 with an average
of 0.336.

Based on the Nei’s genetic distance, the UPGMA
phylogenetic tree displayed five main groups for the 70
inbred lines (Fig. 2). Thirteen inbred lines constituted
group I, group II had 8, group III consisted of 18, group
IV had 6 while group V was made up of 25 inbred lines.
With the exception of the six checks, all the inbred lines
had been improved through direct selection for Striga
resistance and drought tolerance, indirect selection for
low-N tolerance as well as direct selection for increased
PVA and quality protein levels. The six checks (two
normal yellow and four QPM vyellow endosperm inbred
lines) constituted group IV. Available information on the
inbred lines revealed that the different groups and sub-
groups largely depended on pedigree information, the
presence and the dose of genes for drought tolerance, as
well as PVA and quality protein (lysine and/ or trypto-
phan) levels.

Population structure and principal component analyses

The model-based clustering wusing an admixture
programme in the STRUCTURE software was employed
to deduce the number of clusters (K) within the 70 early
maturing inbred lines. In structure analysis, two criteria
can be used to determine the best K in a population.
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These are the use of log of likelihood for each K [13, 14]
and the use of an ad hoc quantity (AK) [9]. For the log
of likelihood criterion, LnP(D) plateaued when K
approached a true value (Fig. 3). On the other hand, the
AK revealed the highest peak at the true K (Fig. 4). The
two plots consistently identified five clusters in the
population (Fig. 5). Sixty-six inbred lines which had
probabilities >0.70 were allocated to a single cluster,
while 4 inbreds (5.71% of the total) had probabilities
<0.70 and could not be distinctly classified into any
of the groups (Table S1). The four inbreds were
referred to as a mixed group. The number and the
order of grouping of the inbred lines in the structure
analysis were very similar to that of the UPGMA
phylogeny. In the STRUCTURE bar plot, the number
of inbred lines classified into each cluster varied from
25 in group I, 8 in group II, 14 in group III, 13 in
group IV, 6 in group V and 4 in mixed group.

Principal Coordinate Analysis (PCoA) of the DArTseq
data was carried out to alternatively study the structure
of the inbred population [15]. The output of the PCoA
was highly consistent with that of the structure analysis.
As illustrated in Fig. 6, the PCoA clearly revealed 5
groups of inbred lines similar to those identified in the
structure analysis.

Analysis of variance of hybrids for agronomic traits

Mean squares of environment (E), hybrid (G), and their
interactions (GEI) were significant (p < 0.01 or 0.05) for
measured traits under each and across environments
except mean squares of GEI for ASI under low-N, and
grain yield across environments (Tables S2 and S3).
Mean squares for research condition (Rcond) x hybrid
interactions showed significant (p < 0.01) difference only

08 1 - 18
0.75 4 55
—~— ~o— —s
071 o i
0.65 4 7
- 14
ooég - X E
55 - - 12
05 ~s e 2
g. e o
2 045 4 L 10 E
S 04 . B
N & 3
g 0.35 | — — » - 8 é
T '
“ 03 - el il o A e e i Sl o s <
0.25 - " &S
0.2 - 4 -
0.15 4 MAF
0.1 - 2 e GeneDiver
0.05 P WD UM S e — — — suy
g 0 === Heterozygosity
0 1 2 3 4 5 6 7 8 9 10 11 -w= PIC
Chromosome «se9+« % SNPs/chrom.
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for ASI. GCA male, GCA female, SCA, GCA male x E,
GCA female x E, and SCA xE revealed significant
(p< 0.01 or 0.05) differences for all traits. The few
exceptions were GCA male x E interactions for ASI
under optimal conditions and across environments, and
GCA female x E for ASI under optimal conditions.
Comparison of grain yield performance of the hybrids
under low-N and optimal conditions revealed yield
reductions ranging from 10% for TZEIORQ 29 x
TZEIORQ 43 to 71% for TZEIORQ 43 x TZEIORQ 41,
with a mean of 34% (Table 1). The top performing
hybrid, TZEIORQ 40 x TZEIORQ 26 (based on the
multiple trait index under low-N) out-yielded the best
commercial hybrid control, TZEIOR 127 x TZEIOR 57
by 8, 3, and 9% under low-N, optimal, and across
environments, respectively. Among the top performing
hybrids under low-N conditions, only TZEIORQ 29 x
TZEIORQ 43 significantly (p < 0.05) yielded better than

the best commercial hybrid control. However, the yield
was not significantly different from those of the top 15
hybrids.

Estimates of repeatability and breeding efficiency

Repeatability (R) values were relatively higher under
optimal environments compared to that of low-N
(Table 1). High R estimates were detected for grain
yield and most other traits under both low-N and op-
timal conditions. Similarly, high breeding efficiency of
71, 70 and 72% were computed under low-N, optimal,
and across environments respectively (Table 2). Over
97% of the crosses classified as the 32 high yielding
inter-group hybrids met the set criterion, while more
than 84% of the crosses categorized as the 32 low
yielding intra-group hybrids also satisfied that criter-
ion for the estimation of breeding efficiency under
low-N, optimal and across research conditions.
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tropical maize germplasm is highly diverse with GD > 0.3
[4, 20]. Additionally, the observed average residual het-
erozygosity of 5.6% was higher compared with the 3.80%
obtained by Dao et al. [5], as well as the 3.34% found by
Liu et al. [21], but was lower than the 8.6% obtained by
Jambrovic et al. [22]. The practically acceptable level of
average heterozygosity indicated that the proportion of
heterozygous individuals in the set of inbred lines was
reasonably low with most of the inbreds being about
94.4% homozygous with their loci fixed with minimal
segregation. The average PIC obtained, 0.289 (ranging
from 0.041 to 0.375) using 8171 SNPs for the 70 inbred
lines was higher than the 0.24 reported by Yu et al. [23]
using 1000 SNPs for a sample size of 274, as well as the
0.256 reported by Dao et al. [5] using 1057 SNPs for a
sample size of 100. This result indicated the existence of

Discussion
The degree of genetic dissimilarity and population struc-
ture of the 70 early maturing inbred lines were assessed
using 8171 DArTseq markers. The summary statistics,
UPGMA phylogeny, structure analysis, and PCoA were
used to investigate the inbred population to ascertain
whether the population was homogeneous or harboured
genetically distinct groups. The average gene diversity
(GD) of 0.36 obtained was higher than the 0.35 reported
by Zhang et al. [4] when a tropical group of maize
varieties was studied. The GD was also higher than that
obtained in previous studies by Lu et al. [16] and Van
Inghelandt [17] which was around 0.32, but was lower
than the value reported by Wu et al. [18] which was
0.364, as well as that obtained by Yang et al. [19] which
was 0.39. The results agreed with previous findings that
<
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a high frequency of alleles and therefore high genetic di-
versity in the population as evident in the average major
allele frequency of 0.74. The average PIC value was simi-
lar to that reported by Wu et al. [18] which was 0.29
using varying number of SNPs up to 43,252 for a sample
of 1857. The differences in the results of this study rela-
tive to other studies may be due to the use of different
genetic materials, the sample sizes and the number of
SNPs used.

Based on the 8171 SNPs and the Nei’'s [24] genetic
distance methods, the UPGMA phylogeny using 1000
non-parametric bootstrapping revealed five clusters for
the 70 inbred lines. The clustering together of particular
inbred lines into a group illustrated that the DArTseq
markers were identical in state at common loci for those
inbred lines and that there was the tendency for such

inbred lines to be more related than those in different
groups. The inbred lines were extracted from the source
population 2009 TZE - OR2 DT STR QPM which is
early maturing, has elevated levels of PVA and quality
protein, drought tolerance (and tolerance to low-N
through unintentional selection) and Striga resistance
[25, 26]. The 13 inbred lines in group I followed pedi-
gree information or were identical by descent, and were
mostly drought and moderately low-N tolerant. The
eight inbred lines in group II were related by pedigree
records and were mostly drought tolerant. Group III
consisted of 18 inbred lines which had the PVA back-
ground coupled with low-N tolerance. Inbred lines in
group III including TZEIORQ 10, TZEIORQ 12,
TZEIORQ 13, TZEIORQ 14, TZEIORQ 15, TZEIORQ
16 and TZEIORQ 17 had the functional PVA gene
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Fig. 6 Principal Coordinate Analysis (PCoA) for the 70 early maturing provitamin A- quality protein maize inbred lines. Similar groups as identified
by the structure analysis; 25 inbreds in group |, 8 in group Il, 14 in group Ill, 13 in group IV, 6 in group V and 4 in mixed group
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Table 1 Grain yield and other agronomic traits of 20 early provitamin A- quality protein maize hybrids (best 15 and worst 5) and
four checks evaluated under low-N and optimal environments in 2016 and 2017 growing seasons at lle-Ife and Mokwa, Nigeria

HYBRID Grain Yield (kg/ha) % Days to 50% Plant Aspect Ear Aspect Ears per plant STGR MI_LN
YRD  Silking

Low-N  Optimal Across Env Low-N Optimal Low-N Optimal Low-N Optimal Low-N Optimal
TZEIORQ 40 x TZEIORQ 26 4155 5911 5207 29 52 51 4 3 4 2 092 0.95 2 6.18
TZEIORQ 42 x TZEIORQ 20 4584 5905 5245 22 52 52 4 3 3 3 083 093 3 5.76
TZEIORQ 43 x TZEIORQ 5 4359 6101 5230 29 51 50 5 4 4 3 091 0.96 2 544
TZEIORQ 47 x TZEIORQ 15 4004 5663 4833 29 52 51 4 3 4 3 0.96 0.98 3 529
TZEIORQ 29 x TZEIORQ 43 5055 5639 5458 10 54 53 5 4 4 3 0.76 0.96 2 51
TZEIORQ 23 x TZEIORQ 11 4623 5729 5392 19 53 51 4 3 4 3 0.79 092 3 4.70
TZEIORQ 26 x TZEIORQ 47 4160 5857 5109 29 52 52 4 3 4 3 0.85 0.85 3 459
TZEIORQ 40 x TZEIORQ 2 4556 6082 5319 25 53 51 4 3 4 3 091 097 4 458
TZEIORQ 7 x TZEIORQ 42 4016 5655 4886 29 52 51 5 4 4 3 097 097 3 4.46
TZEIORQ 26 x TZEIORQ 13 4384 6198 5341 29 53 52 4 3 4 3 092 0.95 4 443
TZEIORQ 70 x TZEIORQ 2 4369 6016 5592 27 54 54 5 4 4 3 0.91 0.99 3 443
TZEIORQ 42 x TZEIORQ 11 4432 5530 4981 20 52 51 5 4 4 3 08 0.96 3 361
TZEIORQ 43 x TZEIORQ 26 4030 5620 4925 28 52 50 5 4 4 2 0.86 087 3 3.58
TZEIORQ 48 x TZEIORQ 43 4694 5888 5291 20 53 52 5 4 4 3 0.75 097 3 3.54
TZEIORQ 43 x TZEIORQ 2 4440 6074 5507 27 52 51 5 4 4 3 091 0.98 4 3.50
TZEIORQ 7 x TZEIORQ 23 1444 2537 1990 43 57 54 7 6 7 5 0.59 0.66 5 -824
TZEIORQ 41 x TZEIORQ 47 933 2934 1933 68 54 53 7 6 7 5 0.67 0.85 5 -10.38
TZEIORQ 23 x TZEIORQ 20 935 2495 1715 63 56 55 7 6 7 5 0.64 0.66 5 —10.63
TZEIORQ 40 x TZEIORQ 41 932 2401 1657 61 55 54 7 6 7 6 0.55 0.71 5 -11.37
TZEIORQ 43 x TZEIORQ 41 747 2568 1657 71 57 55 7 6 7 5 0.62 0.71 5 -13.17
CI1-TZEIOR 127 x TZEIOR 57 3805 5712 4758 33 53 51 5 4 4 3 092 092 3 3.78
C2-TZEI 124 x TZEI 25 3690 6074 4882 39 55 53 4 3 4 3 0.78 0.88 3 341
C3-TZE Pop DT STR x TZEI 17 2962 5500 4231 46 54 52 5 4 5 4 0.77 0383 3 0.67
C4-TZE Pop DT STR x TZEI 13 2430 4381 3406 45 56 54 5 4 5 4 0.7 0.73 4 -1.62
MEAN 354260 5040.15 436344 3403 5330 5206 5.15 4.15 4.70 345 081 0.89 3.50
SED 53327 58501 395.80 - 0.67 0.64 0.39 037 046 048 0.08 0.09 041
REPEATABILITY (R) 0.75 0.82 0.80 - 0.81 0.85 0.78 0.86 0.81 0.88 0.47 0.55 0.72

Across Env across low-N and optimal environments, %YRD percentage yield reduction, PASP plant aspect (1-9), EASP ear aspect (1-9), EPP ears per plant,
STGR stay green characteristic, MI_LN multiple trait base index under low-N, C7 to C4 checks 1 to 4 respectively

(crtRB1) [26]. Also, in group III, inbred lines consisting
of TZEIORQ 55, TZEIORQ 29 and TZEIORQ 20, con-
tained moderate to high PVA contents. It was striking
that all the six inbred checks were classified into group
IV. The inbred checks had yellow kernels and mostly
possessed high quality protein levels and hence their
clustering might have been influenced by common loci
responsible for these traits. Group V was relatively larger
and contained inbred lines which were related by
descent [25, 26].

The log of likelihood method of determining the best
K showed a steep increase in LnP(D) values from K=1
to K=5 after which the trend assumed a plateau. This
observation indicated that the true K was 5 [13, 14] and
that five genetically distinct clusters existed in the entire
population. Similarly, the Evanno criterion identified the

peak level of AK at K=5 [14] inferring five genetically
distinct clusters. The three multivariate analyses illus-
trated the existence of genetically different groups
among the inbred lines. Comparison of the different
methods revealed high consistency among the UPGMA
clustering, the structure analysis, and the PCoA cluster-
ing considering the number of groups and number of
individuals assigned to each group indicating that the
identified groups were indeed genetically distinct.
Individuals from the different groups were therefore,
expected to harbour different favourable alleles for
breeding for drought and/ low-N tolerant hybrids and
synthetics with elevated PVA and QPM contents. The
result contradicted the findings of Dao et al. [5] and
Semagn et al. [3] who reported a high consistency
among structure analysis and the PCoA but a low
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Table 2 Breeding efficiency of the five clusters identified by the
DArTseq markers under low- N, optimal and across

environments

Yield Group Cross type DArTseq Markers
Low N environments

1 Inter 31

1 Intra 1

2 Inter 32

2 Intra 0

3 Inter 4

3 Intra 28
Breeding Efficiency (%) 71.41
Optimal environments

1 Inter 31

1 Intra 1

2 Inter 31

2 Intra 1

3 Inter 5

3 Intra 27
Breeding Efficiency (%) 69.69
Across environments

1 Inter 32

1 Intra 0

2 Inter 31

2 Intra 1

3 Inter 4

3 Intra 28
Breeding Efficiency (%) 72.16

concordance with the neighbour-joining phylogeny
generated using the Roger’s genetic distance method.
This could be due to the differences in the inbred lines
used in the different studies, the different methods of
obtaining the genetic distances among the inbreds, as
well as the different clustering algorithms. The clustering
according to the three multivariate analyses employed in
the present study followed the available pedigree infor-
mation, that is, expected related lines clustered together.
This result substantiated other reports that the grouping
of the tropical maize populations were largely consistent
with pedigree records [3, 5, 27]. The result also demon-
strated that the SNP-based DArT derived markers were
informative in providing genome profiles which are very
useful for the identification of unique characteristics
among the inbred lines [3, 28].

The highly significant mean squares of G and E
observed for most measured traits including grain yield
and stay green characteristic under low-N, optimal, and
across environments implied the existence of high gen-
etic variability among the 96 hybrids generated [29] and
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that the test environments were unique and effectively
revealed genetic differences among the hybrids to
warrant selection. The significant mean squares of GEI
detected for grain yield and most measured traits under
each and across research conditions indicated that envir-
onmental variation controlled the expression of traits
thus substantiating the need to conduct genotype evalu-
ations across multiple environments [30-32] to better
assess grain yield performance and stability of genotypes
[33, 34]. The significant GCA male, GCA female, SCA,
and their interactions with environments for grain yield
and most other traits suggested that additive and non-
additive genetic effects controlled the inheritance of the
traits. This implied that good parental inbreds could be
identified for further improvement in the traits while out-
standing hybrids could be selected for commercialization.
The range of grain yield reduction (10-71%) observed for
the hybrids was higher compared to the 10-50% reported
by [7]. This suggested that the low-N conditions imposed
were more severe and therefore, identified top performing
hybrids were likely to possess low-N tolerant genes which
might have been inherited from the parental inbreds [10].
The top-ranking hybrid, TZEIORQ 29 x TZEIORQ 43
which significantly out-yielded the controls under low-N
with non-significant yield penalties under favourable grow-
ing conditions was also not significantly different from the
remaining 14 top-performing hybrids. This suggested that
all the 15 top-performing hybrids should be further evalu-
ated to confirm consistency of performance under each and
across environments for release and commercialization.
These hybrids would be the hybrids of choice because they
possess better grain yield potential compared to the four
hybrid controls, TZEIOR 127 x TZEIOR 57, TZEI 124 x
TZEI 25, TZE Pop DT STR x TZEI 17, and TZE Pop DT
STR x TZEI 13 which have been released and commercial-
ized (except TZEIOR 127 x TZEIOR 57) in Nigeria, Ghana
and Mali [25]. Moreover, the promising hybrids in the pipe-
line have extra advantage of elevated levels of PVA, lysine
and tryptophan which are lacking in the available commer-
cial hybrid checks.

The high repeatability estimates detected for grain
yield and most other traits under each and across
environments implied that repeated evaluations of the
hybrids under the different research conditions would
yield results consistent with those of the present study.
Thus, genetic effects were preponderance over environ-
mental effects to modulate the expression of the mea-
sured traits. The results also suggested that direct
selection for grain yield under each and across environ-
ments would be effective. Contrary to this result, several
authors have obtained low repeatability estimates for
grain yield particularly under stress environments partly
due to the quantitative nature of the inheritance of the
trait, and the severity of the stress imposed [35-38]. The
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differences in the results could be due to the different
genetic materials, and level of stress imposed. It was
striking to detect high breeding efficiency under low-N,
optimal and across environments indicating that the
inbred lines involved in the hybrid combinations
belonged to genetically distinct groups as revealed by
the results of the molecular (DArTseq) marker analysis.
Similar results were found by [39] who detected high
breeding efficiency for hybrids using SNP marker group-
ings of early white inbred lines. The results suggested
that maximum heterosis (more productive crosses)
could be exploited from the early PVA-QPM inbred
set under low-N, and optimal conditions by selecting
parental lines from opposing groups generated by the
DArTseq markers.

Conclusions

The clustering according to admixture implemented in
the structure software, the principal Coordinate Analysis
(PCoA) of the DArTseq markers and the UPGMA
phylogeny consistently revealed five groups each which
followed pedigree records. The three analyses were also
highly consistent regarding the number of inbreds
assigned to a group. Closely related genotypes with
common characteristics including high PVA, lysine and
tryptophan contents, and also drought and low-N
tolerance were assigned to common groups indicating
the existence of genetically distinctiveness between
groups in the set of inbreds assessed. Hybrid evaluations
showed high breeding efficiency under low-N, optimal
and across environments indicating that the inbred lines
involved in the hybrid combinations belonged to genet-
ically distinct groups as revealed by the molecular
(DArTseq) markers. The 15 top performing hybrids
identified out-yielded the four hybrid controls under
low-N conditions and suffered no yield penalties under
favourable growing conditions. The hybrids should be
further evaluated to confirm consistency of performance
under each and across environments for release and
commercialization. The inbred lines from opposing clusters
could therefore be exploited for developing drought and/
or low-N tolerant hybrids and synthetics with elevated PVA
and quality protein contents for commercialization in SSA,
and for the improvement of the early maturing PVA-QPM
inbred lines.

Methods

Seventy early maturing PVA-QPM inbred lines recently
developed by the IITA-maize improvement programme
were used in the current study (Table S4). All genetic ma-
terials were sourced from the IITA maize programme. The
development of the lines commenced in 2007 and by 2015
they were at the S; generation of inbreeding as described
by Badu-Apraku and Fakorede [25] and Obeng-Bio et al.
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[26]. Briefly, the lines were generated from the 2009 TZE-
OR2 DT STR QPM variety which was formed from a
BC,F; generation derived from the cross between the
Striga resistant and drought tolerant early QPM orange/
yellow population, TZE-Y Pop DT STR QPM and [Syn-
KU1409/DES/1409 (OR2)], an intermediate variety (105—
110 days to physiological maturity) with high PVA content.
During the inbreeding programme, the inbred lines were
evaluated from the S, to the S; generations to identify
those with deep orange kernel colour and possessing 25—
50% opaqueness. The present study assessed the genetic di-
versity of the 70 IITA inbred lines including 66 PVA-QPM
lines along with two normal yellow and two yellow QPM
inbred checks, also from the IITA maize improvement
programme. The checks were selected based on their reac-
tions to drought and low-N stresses. In addition, 24 inbred
lines were selected based on the kernel colour for provita-
min A levels, endosperm opaqueness (25-50%) for trypto-
phan and lysine content, and tolerance to low-N and
drought [25, 26]. These were used to develop 96 single
crosses utilizing the North Carolina II mating design. The
96 hybrids were subsequently tested under low-N and opti-
mal environments at Mokwa and Ile-Ife during the 2016
and 2017 growing seasons in Nigeria.

Collection of leaf samples and DNA extraction

Leaves of the inbred lines were sampled from 10 typical
plants (one leaf per plant) of each inbred line at 2 weeks
after planting (WAP). The leaf samples were freeze-
dried, and genomic DNA samples were extracted from
the leaf tissues following the DArT DNA extraction
protocol [40]. DNA concentration of 30ng/ pl was
obtained for each sample (Thermo Scientific, USA). The
quality of DNA was determined on 0.8% agarose gel and
short or degenerated DNA were discarded.

Diversity Array technology sequencing (DArTseq)
genotyping

Genotyping by sequencing was performed for the PVA-
QPM inbred lines with a high-density whole-genome
profiling of DArT services [11]. The genotyping ser-
vices were provided by the Integrated Genomic Service
and Support (IGSS) platform of BecA-ILRI in Kenya
deploying 44,391 DArTseq codominant markers. Data
generated were analysed with the DArTsoft (DArT P/L,
Canberra, Australia) software as described by DArT Pty
Ltd., Australia [40].

Evaluation of hybrids

The 96 single crosses and four commercial hybrid
checks were tested under low-N (30kg/ ha) conditions
at Ile-Ife (7° 28" N, 4° 33" E, and 244 m above sea level,
1200 mm annual rainfall) and Mokwa (9°18'N, 5° 4'E,
457 m altitude, 1100 mm annual rainfall) in the 2016
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and 2017 growing seasons. The soil types at Ile-Ife and
Mokwa are Alfisol and Luvisol, respectively [41]. Before
the establishment of the low-N trials, the fields were
continuously used for high density maize cultivation
without N fertilizer application for several years and the
biomass was completely removed from the field immedi-
ately after each harvest. These measures were adopted to
deplete the soil of N. Thereafter, the nitrogen (N), phos-
phorus (P) and potassium (K) levels of the soil from each
location were determined from the depth of 0 to 15cm
following the Kjeldahl digestion and colorimetric
method [42] at the IITA analytical services laboratory,
Ibadan, Nigeria. The soil from the low-N field at Ile-Ife
had 0.084 g/kg of N, 2.05 g/kg of P and 0.358 g/kg of K,
while that of Mokwa contained 0.085 g/kg of N, 6.32 g/
kg of P and 0.20 g/kg of K. From the soil test, NPK-
fertilizer that contained urea, single-superphosphate and
muriate-of-potash was formulated and applied immedi-
ately after thinning. This brought the levels of the total
available basal N to 15kg/ha while the P,O5 and K,O
levels provided 60 kg/ha each of P and K. At 4 WAP, 15
kg/ha of urea was applied to obtain 30 kg/ha of total N.
The hybrids were also evaluated under optimal condi-
tions at Ile-Ife and Mokwa during the 2016 and 2017
growing seasons. For the experiments under optimal
conditions, N P K (15:15:15) was applied at 2 WAP to
supply 60 kg/ha each of N, P and K and top-dressed with
an additional 30 kg/ha of N at 4 WAP. A 10 x 10 alpha
lattice design with two replicates was used in both low-
N and optimal experiments. An experimental unit con-
sisted of a single-row plot, 4 m long with row and hill
spacings of 0.75 and 0.40 m, respectively. Two stands
per hill were maintained to obtain about 66,666 plants
per hectare. Pre- and post- emergence herbicides with
the active ingredients primextra and paraquat respect-
ively, were applied at the rate of 51/ha to suppress weed
growth. Manual weeding was also done intermittently to
ensure effective weed control.

Agronomic data collected

The number of days to 50% anthesis (DA) and silking
(DS), and plant height (PLHT) were recorded. Plant as-
pect (PASP) scores were obtained using a scale of 1-9,
where 1 denoted excellent overall appearance of plants
and 9 extremely poor overall appearance of plants. Ear
aspect (EASP) was also rated on a 1-9 scale, where 1
indicated well-filled ears with no insect and disease
damages and 9 represented plots with ears having only
one or no kernel. Anthesis—silking interval (ASI) was
computed as the difference between DA and DS, while
the number of ears per plant (EPP) was derived as the
number of ears harvested per plot divided by the num-
ber of plants in the same plot. Stay-green characteristic
(STGR) was rated under low-N at 70 days after planting
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(DAP), that is, soft dough development stage [43], on a
1-9 scale where 1=1ess than 0.10 dead leaf area, and
9 =more than 0.80 dead leaf area. Grain yield (kg/ha)
was calculated using the grain weight adjusted to 15%
moisture content under low-N conditions. However,
under optimal conditions, a shelling percentage of 80
was assumed per plot for the hybrids and grain yield
(kg/ha) was calculated using ear weight adjusted to 15%
moisture content.

Statistical analysis

DArTseq markers with >80% call rate were retained
prior to statistical analysis. Thereafter, markers with >
10% missing rate were filtered out using the TASSEL
software version 5.2.12 [44]. Minimum and maximum
frequencies of 0.05 and 0.95 respectively, were also con-
sidered for the filtering of markers to finally retain 8171
markers for all subsequent analyses. Summary statistics
including gene diversity, heterozygosity, polymorphic in-
formation content (PIC) and major allele frequency were
computed with PowerMarker version 3.25 [45]. Gene
frequency, and frequency based genetic distance matrix
consisting of the 70 inbred lines were estimated for the
DArT-seq data using the Nei [24] method implemented
in PowerMarker version 3.25. Using the frequency based
genetic distance estimates, the Unweighted Pair Group
Method with Arithmetic Mean (UPGMA) and 1000
nonparametric bootstrapping across different loci were
applied in PowerMarker to construct a dendrogram to
visualize patterns of genetic dissimilarities in the panel
of 70 lines.

In order to determine the genetic structure of the in-
breds the STRUCTURE software package version 2.3.4
[46] which implements a Bayesian clustering procedure
was used to analyse the 8171 DArTseq data. The num-
ber of sub-groups (K) was determined using a procedure
that implemented shared allele frequencies and admix-
ture. The number of K was set to vary from 1 to 12 with
10 replications. Each replication was programmed to run
for 10,000 burn-period and 100,000 Markov Chain
Monte Carlo (MCMC) iterations. The Log of likelihood
[LnP(D)] in STRUCTURE analysis and the derived
change in K (AK) were used to predict the true K value
online from the STRUCTURE Harvester [14]. The derived
AK takes into account the changing trend of LnP(D) with
increase in K, as well as the variance of LnP(D) as the runs
are repeated. The AK reaches the highest peak when the
true value of K is realized. The formula used was:

AK = M[|L(K - 1) - 2L(K) + L(K + 1)[]/S[L(K)]
where: L(K) is the K™ LnP(D), M is the mean of 10 runs,

and S, the standard deviation. The K with the maximum
likelihood was identified as the true K and was used to
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classify the inbred lines into groups. Individual inbreds
with membership probability greater than or equal to
0.70 were classified into the same group while inbreds
with membership probability less than 0.70 constituted a
mixed group [16, 19]. Principal Coordinate Analysis
(PCoA) of the DArTseq markers was performed using
GenALEx version 6.5 [47, 48].

For the hybrid trials, location by year combinations
constituted an environment while the low-N and optimal
environments represented research conditions. Analysis of
variance (ANOVA) based on the NCII mating arrange-
ment was performed on plot mean basis for the agro-
nomic data under each and across research conditions
using the general linear model procedure (PROC GLM) in
SAS, version 9.4 [49]. The model was fitted with environ-
ments, replicates within environments, and incomplete
blocks within replicates x environment interaction as
random factors while the hybrids were fixed. The lattice
design [50] allowed block effects on means of hybrids to
be adjusted and differences among means were separated
using standard error of difference (S.E.D.). The NCII
design partitioned the variation among hybrids into male
within sets, female within sets and male x female inter-
action within sets. General and specific combining ability
(GCA, SCA) effects were estimated as described by
Hallauer and Miranda [51]. Genetic and phenotypic vari-
ance components of the inbreds were estimated using the
restricted maximum likelihood (REML) method and with
PROC Varcomp implemented in SAS, repeatability (R) for
each of the measured traits was estimated [52].

Low-N tolerant hybrids were identified using the
multiple trait base index under low-N conditions as
described by Badu-Apraku et al. [38] as follows:

MI = [(2 x Grain yield) + EPP — ASI — PASP — EASP —
STGR].

where MI = multiple trait base index, EPP = number of
ears per plant, ASI=anthesis-silking interval, PASP =
plant aspect, EASP =ear aspect, STGR =stay green
characteristic.

The traits employed in the MI were standardized to
reduce the effects of unequal scales with positive and
negative values indicating tolerance and susceptibility to
low-N, respectively.

Breeding efficiency (B.E) was calculated for the paren-
tal lines on the basis of the groups revealed by the
DArTseq markers under low-N, optimal, and across re-
search conditions. The 96 hybrids were ranked from the
highest to the lowest using grain yield under each and
across environments. Estimation of B. E for each
research condition involved dividing the total number of
hybrids into inter-group and intra-group crosses as
described by Badu-Apraku et al. [39]. The relationship
among high vyielding intergroup hybrids and total num-
ber of intergroup hybrids as well as the low yielding
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intragroup hybrids and total number of intragroup hy-
brids [39] was used to compute B. E as follows:

HYINTERGH

y LYINTRAGH < 100
TNINTERGH TNINTRAGH

BE =

2

Where, HYINTERGH = number of high yielding inter-
group hybrids, TNINTERGH = total number of inter-
group hybrids, LYINTRAGH = number of low yielding
intra-group hybrids, and TNINTRAGH = total number
of intra-group hybrids. Efficient and productive crosses
allowed inter-group crosses to produce more superior
hybrids than the intra-group crosses [53].
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