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Abstract

Background: Bacterial fruit blotch (BFB), a disease caused by Acidovorax citrulli, results in significant economic
losses in melon. The causal QTLs and genes for resistance to this disease have yet to be identified. Resistance (R)-
genes play vital roles in resistance to plant diseases. Since the complete genome sequence of melon is available
and genome-wide identification of R-genes has been performed for this important crop, comprehensive expression
profiling may lead to the identification of putative candidate genes that function in the response to BFB.

Results: We identified melon accessions that are resistant and susceptible to BFB through repeated bioassays and
characterized all 70 R-genes in melon, including their gene structures, chromosomal locations, domain
organizations, motif distributions, and syntenic relationships. Several disease resistance-related domains were
identified, including NBS, TIR, LRR, CC, RLK, and DUF domains, and the genes were categorized based on the
domains of their encoded proteins. In addition, we profiled the expression patterns of the genes in melon
accessions with contrasting levels of BFB resistance at 12 h, 1 d, 3 d, and 6 d after inoculation with A. citrulli. Six R-
genes exhibited consistent expression patterns (MELO3C023441, MELO3C016529, MELO3C022157, MELO3C022146,
MELO3C025518, and MELO3C004303), with higher expression levels in the resistant vs. susceptible accession.

Conclusion: We identified six putative candidate R-genes against BFB in melon. Upon functional validation, these
genes could be targeted for manipulation via breeding and biotechnological approaches to improve BFB resistance
in melon in the future.
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Background
Melon (Cucumis melo L.) is a highly diversified eudicot
diploid (2n = 2x = 24) cucurbitaceous crop with a gen-
ome size of approximately 375Mb [1]. Melon is eco-
nomically important and ranks as the 9th most
cultivated horticultural crop in terms of worldwide pro-
duction [2, 3]. Its sweet, musky-flavored, fleshy fruit is
rich in vitamins, minerals, and health-promoting antioxi-
dants, including ascorbic acid, carotene, folic acid, and
potassium [4–6].
Melon is vulnerable to various biotic and abiotic

stresses [7, 8]. Bacterial fruit blotch (BFB) is a devastat-
ing disease of melon caused by Acidovorax citrulli, an
aerobic, mesophilic, gram-negative, rod-shaped seed-
borne bacterium belonging to the beta subdivision of the
Proteobacteria [9]. BFB has been reported in many
countries and poses a serious threat to melon, as well as
other cucurbit crops including prickly paddy melon, cit-
ron melon, cucumber, pumpkin, squash, several types of
gourds, and watermelon [10–16]. BFB causes water-
soaked lesions to form on cotyledons and leaves, leading
to collapse and death. The lesions on fruits are small (~
1 cm diameter), irregular, and often sunken, progressing
through the rind. The lesions then become necrotic,
causing decay and cracks in the fruit. These lesions ex-
pose the plant to secondary infections and cause A.
citrulli to colonize the pulp, eventually allowing the seed
to become contaminated [17]. BFB causes 80–100%
losses in production under favorable environmental situ-
ations, especially during the rainy season and in regions
with highly fluctuating temperatures [18, 19]. Although
BFB is of great concern to farmers and seed companies,
strategies for managing this disease are limited; chemical
control measures are environmentally hazardous and
only partially effective, and resistant commercial culti-
vars have not yet been developed [13, 20–24]. Host re-
sistance represents the most cost effective and
environmentally friendly approach for managing BFB
[12]. However, no QTL or R-gene for this disease has
thus far been identified in melon. Efforts to develop
BFB-resistant melon genotypes would be greatly en-
hanced by the identification of functional R-genes.
Genomic studies have provided insight into the evolu-

tion of R-genes, which play important roles in the plant
immune system in response to various pathogens and
insects [25]. Plant R-genes encode proteins containing
domains such as Nucleotide-binding site (NBS),
Leucine-rich repeat (LRR), Toll/interleukin-1 receptor
(TIR), Coiled-coil (CC), and Receptor-like kinase (RLK)
domains [26–32]. These domains are involved in patho-
gen recognition, signaling, and plant innate immunity
responses [26, 27, 29, 31–35]. R-genes have been identi-
fied in the genomes of plant species including water-
melon [36], cucumber [25], rice [37, 38], Chinese

cabbage [39], maize [40], wheat [41], Arabidopsis thali-
ana [42], and apple [43].
An improved assembly and annotation of the melon

(Cucumis melo L.) reference genome identified 70 R-
genes in melon [1, 44, 45]. In the current study, we in-
vestigated the expression patterns of R-genes throughout
the melon genome in response to the BFB-causing bac-
terium A. citrulli in melon accessions contrasting in BFB
resistance. The aim of this study was to identify putative
candidate R-genes that confer resistance to BFB in
melon.

Results
Genome-wide melon R-genes and their chromosomal
distribution
The latest version (v3.6.1) of the whole-genome se-
quence of the melon double haploid line DHL90 was
constructed using an improved assembly and annotation.
This sequence contains 70 R-genes [1, 44]. We retrieved
genomic information for these 70 R-genes, including
their coding sequences and deduced amino acid se-
quences, from the cucurbit genome database (http://
cucurbitgenomics.org). Detailed genomic information
about these R-genes, including their locations on chro-
mosomes, is provided in Table 1. Chromosomal map-
ping of the 70 R-genes revealed that they are distributed
across all 12 melon chromosomes, with 1 to 12 genes
per chromosome (Fig. 1; Table 1). Chromosome 9
(Chr09) contains the most R-genes (12), followed by
Chr12 and Chr01 (10 and 9 genes, respectively). Chr11
contains the fewest R-genes (2), followed by Chr03 and
Chr07 (3 genes each). The genes appear to be clustered,
particularly in the telomere regions of chromosomes
such as chr09, chr01, and chr04 (Fig. 1).

Gene structures, domain organizations, and motif
distribution of R-genes in melon
We analyzed the exon–intron structures of all 70 melon
R-genes by comparing their coding sequences with the
corresponding genomic sequences using the online tool
GSDS2.0 (http://gsds.cbi.pku.edu.cn/). The highest num-
ber of exons (22) was in the gene MELO3C013803,
followed by 18 in MELO3C007367 (Additional file 1: Fig.
S1). Among the 70 R-genes, 21 were mono-exonic, while
12 and 4 genes were bi- and tri-exonic, respectively.
We analyzed the conserved domains of the 70 melon R-

genes using the Conserved Domain Database (CDD) at
https://www.ncbi.nlm.nih.gov/Structure/bwrpsb/bwrpsb.cgi.
We detected several disease resistance-related domains
encoded by these R-genes, such as NB-ARC (Nucleotide-
binding adaptor shared by APAF-1, R proteins, and CED-4),
LRR (Leucine-rich repeat), TIR (Toll/interleukin-1 receptor),
CC (Coiled-coil), and RLK (Receptor-like kinase) domains.
The R-genes were grouped into different classes based on
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Table 1 Information about R-genes throughout the melon genome including chromosomal positions, lengths, and annotated
descriptions

Sl. Gene IDa Chr.
Number

Position on chromosome CDS-
length
(bp)

Peptide
length
(AA)

Strand Description

Start End

1 MELO3C023580.2 chr01 33,386,823 33,390,698 687 288 – Disease-resistance protein RGA2-like

2 MELO3C023579.2 chr01 33,395,126 33,397,789 2664 887 – Disease-resistance protein RGA2-like isoform X1

3 MELO3C023578.2 chr01 33,410,087 33,414,749 1158 385 – Disease-resistance protein

4 MELO3C023577.2 chr01 33,419,963 33,423,566 2715 904 – Disease-resistance protein RGA2-like

5 MELO3C023441.2 chr01 34,457,351 34,462,055 2766 921 – Receptor-kinase, putative

6 MELO3C023440.2 chr01 34,462,521 34,463,915 1338 445 – LRR receptor-like serine/threonine-protein kinase GSO2

7 MELO3C023439.2 chr01 34,468,416 34,473,193 3207 1068 – LRR receptor-like serine/threonine-protein kinase GSO2

8 MELO3C023438.2 chr01 34,474,924 34,475,353 336 111 + LRR receptor-like serine/threonine-protein kinase GSO2

9 MELO3C023437.2 chr01 34,475,729 34,476,367 354 117 + Receptor-kinase, putative

10 MELO3C029319.2 chr02 4,111,584 4,115,605 717 238 + NBS-LRR type resistance protein

11 MELO3C015353.2 chr02 985,162 987,242 1737 578 + Disease-resistance protein RGA2-like

12 MELO3C015354.2 chr02 990,582 993,823 3240 1080 + Disease-resistance protein RGA2-like

13 MELO3C029505.2 chr02 7,359,371 7,363,388 765 254 – TMV resistance protein N-like

14 MELO3C010346.2 chr02 17,481,683 17,485,283 1593 530 + TMV resistance protein N

15 MELO3C010827.2 chr03 30,596,169 30,600,072 3663 1054 – Receptor-kinase, putative

16 MELO3C010826.2 chr03 30,600,299 30,603,794 3054 1071 – Receptor-kinase, putative

17 MELO3C010825.2 chr03 30,604,364 30,611,770 6069 2022 – Receptor-kinase, putative

18 MELO3C009695.2 chr04 30,097,463 30,100,144 2682 893 + Disease-resistance protein

19 MELO3C009694.2 chr04 30,103,601 30,106,071 2391 796 + Disease-resistance protein

20 MELO3C009693.2 chr04 30,110,724 30,113,156 2358 786 + Disease-resistance protein

21 MELO3C009179.2 chr04 33,763,652 33,766,776 3042 1013 + Receptor-kinase, putative

22 MELO3C009177.2 chr04 33,766,795 33,780,875 3231 1076 + Receptor-kinase, putative

23 MELO3C004259.2 chr05 25,752,437 25,757,292 3951 1316 + TMV resistance protein N-like isoform X1

24 MELO3C004288.2 chr05 26,044,574 26,052,361 3171 1056 + TMV resistance protein N-like

25 MELO3C004289.2 chr05 26,065,157 26,071,880 3867 1288 – TMV resistance protein N-like

26 MELO3C004301.2 chr05 26,231,021 26,237,770 4032 1343 – TMV resistance protein N-like isoform X1

27 MELO3C004303.2 chr05 26,239,395 26,244,020 2052 683 – TMV resistance protein N-like

28 MELO3C004309.2 chr05 26,263,738 26,270,641 4134 1377 + TMV resistance protein N-like

29 MELO3C004311.2 chr05 26,280,801 26,299,171 3156 1051 – TMV resistance protein N-like

30 MELO3C004313.2 chr05 26,311,869 26,315,091 2115 704 – TMV resistance protein N-like

31 MELO3C006780.2 chr06 5,898,974 5,902,420 3447 1148 – Disease-resistance protein

32 MELO3C006801.2 chr06 6,106,483 6,109,133 846 281 – Protein enhanced disease resistance 2-like

33 MELO3C016529.2 chr06 27,910,808 27,913,125 504 167 – TMV resistance protein N

34 MELO3C013803.2 chr06 33,588,343 33,599,894 2184 727 + Protein enhanced disease resistance 2

35 MELO3C017700.2 chr07 26,469,746 26,473,637 3141 1046 – Disease-resistance protein RGA2-like

36 MELO3C017701.2 chr07 26,475,401 26,480,759 3192 1063 + Disease-resistance protein RGA2-like

37 MELO3C017703.2 chr07 26,480,404 26,483,226 2823 940 – Disease-resistance protein RGA2-like

38 MELO3C007354.2 chr08 2,332,143 2,335,108 1806 601 – Cysteine-rich receptor-like protein kinase 29

39 MELO3C007358.2 chr08 2,346,707 2,353,661 4296 1431 – Receptor-like protein kinase

40 MELO3C007360.2 chr08 23,53,788 2,361,267 4088 1395 – Receptor-like protein kinase

41 MELO3C007367.2 chr08 2,372,510 2,386,472 4656 1551 – Receptor-like kinase

42 MELO3C022157.2 chr09 665,753 668,864 2025 674 – TMV resistance protein N-like isoform X1
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the presence of the following conserved domains in
their encoded proteins: (i) LRR, (ii) NBS-LRR, (iii)
TIR, (iv) TIR-NBS-LRR, (v) NB-ARC, (vi) CC, (vii)
RLK, and (viii) DUF (Table 2 and Additional file 1:
Fig. S2). Thirty-seven genes encoded proteins with
only LRR domains, seven encoded proteins with NB-
ARC domains, two encoded proteins with TIR do-
mains, and only one encodes a protein with a CC do-
main (Table 2). Twelve genes encoded three domains
(TIR, NBS, and LRR), including MELO3C004288,
MELO3C004289, MELO3C004311, MELO3C004313,
MELO3C022154, MELO3C022152, MELO3C022146,

MELO3C022145, MELO3C022144, MELO3C004309,
MELO3C004259, and MELO3C004301. A list of the
genes and a description of their domains is provided
in Table 2.
We analyzed the conserved motifs of these 70 R-genes

using the MEME Suite (http://meme-uite.org/tools/
meme). A total of 20 conserved motifs were detected in
these 70 R-genes, each comprising more than 14 amino
acids. The greatest number of motifs was identified in
the LRR domain-encoding gene MELO3C002394,
whereas the fewest were detected in MELO3C029505,
MELO3C023580, and MELO3C006801, which are LRR-,

Table 1 Information about R-genes throughout the melon genome including chromosomal positions, lengths, and annotated
descriptions (Continued)

Sl. Gene IDa Chr.
Number

Position on chromosome CDS-
length
(bp)

Peptide
length
(AA)

Strand Description

Start End

43 MELO3C022154.2 chr09 681,564 689,908 3432 1143 – TMV resistance protein N-like

44 MELO3C022152.2 chr09 700,743 713,705 4173 1390 + TMV resistance protein N-like

45 MELO3C022146.2 chr09 762,107 767,613 2274 757 – TMV resistance protein N-like

46 MELO3C022145.2 chr09 768,255 784,265 3807 1268 + TMV resistance protein N-like

47 MELO3C022144.2 chr09 784,629 792,999 4902 1633 – TMV resistance protein N-like

48 MELO3C025516.2 chr09 6,632,514 6,659,697 4371 1,456 – TMV resistance protein N-like

49 MELO3C025519.2 chr09 6,674,960 6,677,738 762 253 – Disease-resistance protein RGA2-like

50 MELO3C025518.2 chr09 6,675,092 6,676,395 648 215 – Disease-resistance protein RGA2-like

51 MELO3C005450.2 chr09 21,691,401 21,694,271 2790 929 – LRR receptor-like kinase family protein

52 MELO3C005451.2 chr09 21,699,468 21,702,467 3000 999 – LRR receptor-like kinase

53 MELO3C005452.2 chr09 21,708,265 21,711,353 28,17 938 – LRR receptor-like kinase

54 MELO3C012268.2 chr10 1,574,521 1,579,615 1800 599 + Leaf rust 10 disease-resistance locus receptor-like
protein kinase-like 1.2 isoform X4

55 MELO3C012049.2 chr10 2,989,020 2,990,934 1869 622 + Leaf rust 10 disease-resistance locus receptor-like
protein kinase-like 1.5

56 MELO3C012045.2 chr10 3,007,893 3,014,091 1503 500 – Protein enhanced disease resistance 2

57 MELO3C034399.2 chr10 15,627,727 15,627,921 195 64 + Disease-resistance protein At4g27190-like

58 MELO3C022580.2 chr10 16,222,411 16,222,859 447 148 – Disease-resistance protein RGA2-like

59 MELO3C022447.2 chr11 33,758,671 33,762,610 3030 1009 – Receptor-like protein

60 MELO3C022449.2 chr11 33,770,307 33,772,966 2145 714 – Receptor-like protein

61 MELO3C002671.2 chr12 22,199,381 22,201,102 1350 449 + LRR receptor-like kinase

62 MELO3C002667.2 chr12 22,209,961 22,215,123 3279 1092 + LRR receptor-like kinase

63 MELO3C002666.2 chr12 22,219,699 22,226,478 3114 1037 + LRR receptor-like kinase

64 MELO3C002506.2 chr12 23,598,469 23,607,646 2040 679 – Receptor-like protein kinase

65 MELO3C002504.2 chr12 23,611,543 23,620,880 3870 1289 – Cysteine-rich receptor-like protein kinase 28

66 MELO3C002501.2 chr12 23,633,920 23,636,908 1617 538 + Cysteine-rich receptor-like protein kinase
26 isoform X1

67 MELO3C002394.2 chr12 24,343,418 4,346,595 2385 794 – LRR receptor-like kinase family protein

68 MELO3C002393.2 chr12 24,352,898 4,355,087 2190 729 – LRR receptor-like kinase

69 MELO3C002392.2 chr12 24,358,807 24,361,890 3084 1027 – LRR receptor-like serine/threonine-
protein kinase GSO1

70 MELO3C002389.2 chr12 24,376,328 24,380,811 3786 1261 + LRR receptor-like serine/threonine-protein kinase GSO1
aGenomic information based on the reference Genome of Melon (DHL92) v3.6.1 retrieved from the Cucurbit Genomics Database (http://cucurbitgenomics.org)
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CC-, and DUF-domain-encoding genes, respectively.
The distribution of these conserved motifs, along with
the motif sequences, is described in Fig. 2.

Microsynteny of melon R-genes with genes in the
watermelon and cucumber genomes
We analyzed the microsyntenic relationships of the 70
R-genes from melon (Cucumis melo) with genes in the
watermelon (Citrullus lanatus) and cucumber (Cucumis
sativus) genomes using the Circos tool. Most R-genes
from melon were homologous to R-genes from water-
melon and cucumber. However, watermelon R-genes on
chromosomes 11 and 12 lacked homologues in melon
(Fig. 3). By contrast, all 70 R-genes in melon had homo-
logues in all chromosomes of cucumber.

Expression profiles of melon R-genes in response to A.
citrulli inoculation
We investigated the expression patterns of the 70 melon
R-genes in the leaves of resistant and susceptible melon
seedlings at 12 h, 1 d, 3 d, and 6 d of inoculation with A.
citrulli strain NIHHS15–280 via qRT-PCR. Several genes
showed differential expression in the resistant vs.

susceptible accession at different time points. A general
trend of low expression for these genes was observed in
the susceptible accession (Fig. 4). On the contrary, most of
the genes were significantly induced within 12 h of A.
citrulli infection in the resistant accession and showed a
general increase in expression in this accession. By con-
trast, in the susceptible accession, the expression of these
genes fluctuated, with little or no expression at the 12 h
time point. Heatmap analysis of the expression data iden-
tified a sub-cluster of six genes (MELO3C023441,
MELO3C016529, MELO3C022157, MELO3C022146,
MELO3C025518, and MELO3C004303) that showed con-
trasting trends of expression in the resistant vs. susceptible
accession, with progressively increasing expression after
inoculation with A. citrulli in the resistant but not the sus-
ceptible accession (Fig. 4). Extensive analysis of these six
genes indicated that the expression of four genes
(MELO3C023441, MELO3C004303, MELO3C022146,
and MELO3C025518) increased in the resistant accession
with increasing time after inoculation with A. citrulli
(Fig. 5). In the susceptible accession, the expressions of
these genes were very low in the initial hours after inocu-
lation and did not show significant increase over time after

Fig. 1 Chromosomal distribution of R-genes in melon genome-wide. The map was drawn using MapChart (v2.32)
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inoculation. In the resistant accession, the expression of
these four genes (MELO3C023441, MELO3C004303,
MELO3C022146, and MELO3C025518) peaked at 6 d
after inoculation, with levels approximately 8-, 8-, 10-, and
7-fold those of the control samples, respectively. In the
susceptible accession, the expression of two of these genes
did not increase in response to A. citrulli inoculation,
whereas the expression of two genes (MELO3C022157
and MELO3C016529) generally increased in response to
inoculation, but to a lesser extent than in the resistant ac-
cession. The expression of these two genes increased until
3 d after inoculation (5-fold in MELO3C016529 and 2.5-
fold in MELO3C022157), followed by a decrease to their
lowest levels at 6 d post inoculation (Fig. 5).

Discussion
Here, we identified R-genes with putative roles in resist-
ance to BFB disease in melon by profiling the genome-
wide expression patterns of R-genes from melon in re-
sponse to inoculation with A. citrulli. Disease resistance
in plants involves the interaction between specific dis-
ease resistance (R)-genes in plants and avirulence (avr)
genes of the pathogen which is known as gene-for-gene
model [55, 56]. Most plant R-genes belong to a super-
family of genes encoding proteins with an NBS or LRR

domain, an N-terminal TIR or CC domain, or an RLK/
RLP domain [29, 57]. A meta-analysis of the 314 cloned
plant R-genes revealed that 191 (61%) such genes are
NBS-LRR genes and 60 (19%) genes are RLKs/RLPs [58].
NBS domains bind to and hydrolyze adenosine triphos-
phate (ATP) or guanosine triphosphate (GTP) and are
involved in signaling; LRR domains are highly adaptable
structural domains that are responsible for protein–pro-
tein interactions and play an important role in plant–
pathogen recognition [59]; TIR domains provide patho-
gen specificity and plant defense responses, while CC
domains are involved in pathogen recognition and sig-
naling; and RLK domains play roles in signaling and
plant defense responses.
In melon, four resistance gene homologue sequences

were previously reported that contained 14 TIR-NBS-
LRR genes [60, 61]. A study of the first complete gen-
ome sequence of melon identified 411 putative R-genes,
including 161 RLKs, 110 RLP (receptor-like proteins)
genes, 19 RLK-GNK2 (kinases containing an additional
antifungal protein ginkbilobin-2 domain) genes, and 81
genes containing canonical resistance domains, such as
NBS, LRR, and TIR domains [1]. Among these genes, 25
were homologous to Pto genes from tomato and 15 were
homologous to Mlo genes from barley [62, 63]. After

Table 2 R-genes throughout the melon genome categorized based on functional disease resistance-related domains

Sl. Domain Function Gene ID

1 Leucine-rich repeat (LRR) Recognition of pathogen
and Plant Defense [29, 46]

MELO3C023577.2, MELO3C023579.2, MELO3C015353.2,
MELO3C015354.2, MELO3C017700.2, MELO3C017701.2,
MELO3C025518.2, MELO3C009695.2, MELO3C006780.2,
MELO3C023441.2, MELO3C023437.2, MELO3C023440.2,
MELO3C023439.2, MELO3C023438.2, MELO3C004303.2,
MELO3C025516.2, MELO3C010346.2, MELO3C005450.2,
MELO3C002394.2, MELO3C005451.2, MELO3C005452.2,
MELO3C002671.2, MELO3C002667.2, MELO3C022447.2,
MELO3C022449.2, MELO3C002392.2, MELO3C002389.2,
MELO3C002393.2, MELO3C029505.2, MELO3C034399.2,
MELO3C010827.2, MELO3C010826.2, MELO3C010825.2,
MELO3C009179.2, MELO3C009177.2, MELO3C007367.2,
MELO3C002666.2

2 Nucleotide-binding site leucine-rich
repeat (NBS-LRR)

Resistance protein Signaling and Plant
Defense [27, 33, 47]

MELO3C029319.2

3 Toll/interleukin-1 receptor homology (TIR) TMV resistance protein N [34, 46] MELO3C022157.2, MELO3C016529.2

4 Toll/interleukin-1 receptor homology
nucleotide-binding site leucine-rich
repeat (TIR-NBS-LRR)

Pathogen specificity and defense
[34, 46, 48] {Nandety, 2013 #111}

MELO3C004288.2, MELO3C004289.2, MELO3C004311.2,
MELO3C004313.2, MELO3C022154.2, MELO3C022152.2,
MELO3C022146.2, MELO3C022145.2, MELO3C022144.2,
MELO3C004309.2, MELO3C004259.2, MELO3C004301.2,

5 Nucleotide-binding adaptor shared
by APAF-1, R proteins and CED-4
(NB-ARC)

Molecular switch in activating
defenses [28, 31]

MELO3C017703.2, MELO3C025519.2, MELO3C022580.2,
MELO3C023578.2, MELO3C009694.2, MELO3C009693.2,
MELO3C013803.2

6 Coiled-coil domain (CC) Pathogen recognition and
signaling [31, 32, 49]

MELO3C023580.2

7 Protein kinase (RLK) Signaling and plant defense [35, 50–52] MELO3C007354.2, MELO3C007358.2, MELO3C007360.2,
MELO3C002506.2, MELO3C012268.2, MELO3C012049.2,
MELO3C002504.2, MELO3C002501.2

8 Domain of unknown function (DUF) Protein enhanced disease
resistance 2-like [53, 54]

MELO3C006801.2, MELO3C012045.2
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further improvements in the assembly and annotation of
the melon (Cucumis melo L.) reference genome, 70 R-
genes were ultimately identified in melon [44].
Our comprehensive in-silico analysis of the 70 melon

R-genes revealed that they encode proteins with several
disease resistance-related domains, including LRR, NBS,
TIR, NB-ARC, CC, RLK, and DUF domains (Table 2).
These genes are distributed across all melon chromo-
somes, and some are clustered in the telomeric regions of
a few chromosomes (Fig. 1). The clustering of R-genes is
an evolutionarily conserved defense mechanism in plants
wherein recombination in closely located genes creates
new motif combinations, which generates novel resistance
specificities and broadens plant resistance to different dis-
eases [42, 64]. R-gene clusters that provide resistance to
multiple diseases have been reported for angular leaf spot,
downy mildew, and anthracnose diseases in cucumber
[65] and for blackleg, sclerotinia stem rot, and clubroot
diseases in B. napus [66–68] and B. rapa [66]. In melon, a

1Mb region on chromosome five contains the highest
density of R-genes [69]. In addition, a cluster of 13 TNL
genes is located in the same region as the melon Vat re-
sistance gene [70], and another cluster of 7 TNL genes is
located in the region harboring the Fom-1 resistance gene
[71]. The Vat locus encodes a CC-NBS-LRR protein that
confers resistance to aphid and aphid-mediated viruses
in melon. The loss of two highly conserved LRRs is
linked with susceptibility to these viruses [72]. In
addition, the Fusarium wilt resistance locus Fom-2 is
a TIR-NBS-LRR gene [73]. Expression patterns of the
genome-wide R-genes are thus studied to identify any
potential candidate genes against A. citrulli.
Six melon genes were highly expressed in the BFB-

resistant accession. Of these genes, three (MELO3C016529,
MELO3C022157, and MELO3C022146) are TNL genes,
two (MELO3C023441 and MELO3C025518) are LRR
genes, and one (MELO3C005452) is an NBS-LRR gene
(Table 2). These genes were highly expressed at 6 d after

Fig. 2 Conserved motifs in the R-genes of melon. Motifs are indicated by different colored rectangles. Motif sequences are provided in the
legend
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inoculation (Fig. 5), which is consistent with our observa-
tion that BFB symptoms first appeared at 6–7 d in a sus-
ceptible accession [74].
Expression analysis upon infection with A. citrulli indi-

cated a general trend of low expression for most R-genes
in susceptible accession. By contrast, a set of genes includ-
ing MELO3C023441, MELO3C004303, MELO3C022146,
and MELO3C025518 were expressed at much higher
levels, and MELO3C022157 and MELO3C016529 were
expressed at relatively higher levels, (Fig. 5) in the resistant
accession. Such higher expression in response to A. citrulli
in the resistant accession indicates the potential involve-
ment of these R-genes in BFB resistance in melon.
Several comparative transcriptomic studies have been

reported in melon [75–77], but few studies have fo-
cused exclusively on expression profiling of R-genes
against phytopathogenic agents in melon. For example,
RNA-seq assessment of the changes in transcript levels

at different time points in Phytophthora capsici-inocu-
lated tissues of resistant and susceptible melon geno-
types provided a basis for identifying candidate
resistant genes [78]. Comparative transcriptome ana-
lysis identified ten genes that were differentially
expressed in resistant and susceptible cultivars of
melon in response to powdery mildew [79]. In addition,
a study of the MLO (mildew resistance locus o) gene
family in melon revealed candidate genes that might
play roles in susceptibility to powdery mildew [80]. In
watermelon, six NBS-encoding R-genes were identified
as candidates for gummy stem blight (GSB) resistance
[81, 82]. Finally, markers have been developed for detect-
ing both GSB and BFB resistance in melon based on the
sequence polymorphism in the TIR-NBS-LRR gene
MELO3C022157 [81, 83]. Notably, all six candidate R-
genes identified in the current study have corresponding
homologues in watermelon and cucumber (Fig. 3). The

Fig. 3 Microsynteny analysis of all 70 melon R-genes with those of watermelon and cucumber. Melon, watermelon, and cucumber chromosomes
are shown in orange, blue, and green, respectively. The diagram was drawn using the web-based tool Circos (http://circos.ca/software/download/)
circos-0.69-9.tgz
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Fig. 4 Heat map of the expression patterns of melon R-genes determined by qRT-PCR in BFB-resistant and -susceptible melon accessions at the
indicated time points after inoculation with A. citrulli. The expression levels were normalized to that Actin (the expression levels of the Actin gene
are shown in Additional file 1: Fig. S3). The values were obtained from the means of three biological replicates. Red and green represent the
minimum and maximum values, respectively. The IDs of six putative R-genes are shown in pink on the right side of the figure. MELO3C002671
and MELO3C022447 were not expressed and are therefore not shown in the heatmap. The heat map was generated using the online tool
Heatmapper (http://www.heatmapper.ca/expression/)

Fig. 5 Relative expression levels of six candidate R-genes in resistant and susceptible melon accessions at the indicated time points after
inoculation with A. citrulli. Error bars represent standard errors of three individual observations. Different letters above the bars indicate significant
differences, as determined by Tukey’s pairwise comparison. Ct-control, h- hour, and d- day
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roles of these genes in BFB resistance in these two crops
remain to be investigated.

Conclusions
We identified six putative candidate genes that might
play roles in resistance to BFB in melon. This is the first
report of candidate genes for BFB resistance in melon.
Our findings provide a basis for further functional stud-
ies to validate the exact roles of these genes. In addition,
causal sequence polymorphisms could be identified in
these genes, leading to the development of markers for
BFB resistance. Our findings will thus be useful for im-
proving the BFB resistance trait in melon.

Methods
A. citrulli: collection, culture, and inoculum preparation
A. citrulli strain NIHHS15–280 was obtained from the
National Institute of Horticultural and Herbal Science
(NIHHS), South Korea. The bacterium was cultured on
Petri plates containing 20ml King’s B (KB) medium sup-
plemented with 100 μg ml− 1 ampicillin for 36–48 h at
28 °C [84] until bacterial colonies formed. For all inocu-
lations, a bacterial suspension was prepared by covering
the culture plates with 5 ml of sterile, double distilled
(DD) water and gently scraping the surface of the KB
medium using an L-shaped rubber spreader to an optical
density (OD) of 1.0 at 600 nm, as measured using a
NanoDrop ND-1000 Spectrophotometer. The bacterial
suspension was diluted to a final concentration of ~ 1 ×
106 colony forming units (cfu) mL− 1.

Plant materials, growth conditions, and bioassays
The BFB-resistant (PI 353814) and -susceptible (PI
614596) melon accessions [74, 85] used in this study
were obtained from the U.S. National Plant Germplasm
System (https://npgsweb.ars-grin.gov/gringlobal/search.
aspx), USDA, USA. The seeds were sown in a commer-
cial nursery soil mixture in 32-cell trays and grown in a
controlled plant growth chamber at 25 ± 2 °C, 16 h day
length, relative humidity of 60%, and a light intensity of
440 μmoles/m2/s at bench level. After 3 weeks, the
plants were transferred to a greenhouse.
Two weeks after germination, the plants were trans-

ferred to plastic pots and grown in a greenhouse at 24 ±
2 °C with a relative humidity of 90% where the plants
were inoculated with A. citrulli. The resistance status of
the accessions was reconfirmed via bioassay (Fig. 6) as
previously reported with minor modifications [86].
Plants at the 3–5 true-leaf stage (4–5 weeks old) were
sprayed with bacterial suspensions until runoff in a
greenhouse at 22 ± 2 °C with a relative humidity of 96%.
Plants were re-inoculated 3 d after the first inoculation
to ensure that no plants had avoided inoculation and to
eliminate false positives. Leaf samples from three

biological replicates were collected at different time
points (0 h, 12 h, 1 d, 3 d, and 6 d), immediately
immersed in liquid nitrogen, and stored at − 80 °C for
RNA extraction and cDNA synthesis.

Total RNA isolation and cDNA synthesis
The melon leaves were ground to a powder in liquid
nitrogen, and 100 mg of each sample with three bio-
logical replicates was subjected to total RNA extrac-
tion using the RNeasy Mini kit (Qiagen, Valencia,
CA) following the manufacturer’s instructions. First-
strand cDNA was synthesized from total RNA with a
SuperScript III First-Strand Synthesis System kit (Invi-
trogen, Gaithersburg, MD).

Identification and in silico analysis of melon R-genes
Genomic information for all 70 R-genes, as reported in
the improved assembly and annotated genome of melon
[44], was retrieved from the cucurbit genomic database
(http://cucurbitgenomics.org) (Additional file 1: Table
S1). The genes were subjected to a series of in silico ana-
lyses such as exon–intron structure, motif distribution,
domain organization, chromosomal mapping, and
microsynteny analyses (for specific analytical tools, see
the Results section).

Primer design and quantitative RT-PCR analysis
Gene-specific primers for quantitative RT-PCR (qRT-
PCR) were designed using Primer3Plus (https://primer3
plus.com/cgibin/dev/primer3plus.cgi) (Table 1). The

Fig. 6 Disease symptoms in the leaves of susceptible (PI 614596)
and resistant (PI 353814) melon accessions at 12 d after inoculation
with A. citrulli. All leaves were detached from the plants immediately
before they were photographed
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expression patterns of the R-genes were analyzed by
qRT-PCR in a LightCycler® instrument (Roche, Mann-
heim, Germany) following the manufacturer’s instruc-
tions. The reactions were performed in a 10 μL volume
consisting of 5 μL of 2x qPCRBIO SyGreen Mix Lo-ROX
(PCR Biosystems, London, UK), 5 pmol of primers, and
cDNA template diluted to the appropriate concentra-
tions. The PCR conditions were as follows: 5 min at
95 °C, followed by 3-step amplifications at 95 °C for 15 s,
56 °C for 15 s and 72 °C for 20 s for 45 cycles. The mean
expression levels of relevant genes were calculated by
the 2–ΔΔ Ct method [87] using the average value of three
reference genes [2, 8, 88] as internal control.

Statistical analysis
Analysis of variance (ANOVA) and significance tests
were carried out using the normalized gene expression
values with MINITAB17 software (Minitab Inc., State
College, PA, USA). Tukey’s pairwise comparison test
was employed to determine the mean separation of ex-
pression values. p values indicate statistically significant
variations of expression.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12863-020-00885-9.

Additional file 1: Table S1. Details of the primers designed for
expression profiling of melon R-genes. Figure S1. Exon–intron structures
of R-genes in melon genome-wide. Light red rectangles and black lines
indicate exons and introns, respectively. Figure S2. Domain structures of
the 70 R-genes in melon. The conserved domains were identified using
the NCBI Conserved Domain Database (CDD) (https://www.ncbi.nlm.nih.
gov/Structure/bwrpsb/bwrpsb.cgi). Detailed descriptions of these do-
mains are provided in Table 2. Specific domains in each protein are
shown in the diagram. Figure S3. Gene expression profiles of resistant
and susceptible melon accessions at different time points normalized to
melon Actin expression (CmACT7, 149 bp), as determined by qRT-PCR
analysis.
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