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Abstract

Background: Marek’s disease (MD) is a highly neoplastic disease primarily affecting chickens, and remains as a chronic
infectious disease that threatens the poultry industry. Copy number variation (CNV) has been examined in many
species and is recognized as a major source of genetic variation that directly contributes to phenotypic variation such
as resistance to infectious diseases. Two highly inbred chicken lines, 63 (MD-resistant) and 72 (MD-susceptible), as well
as their F1 generation and six recombinant congenic strains (RCSs) with varied susceptibility to MD, are considered as
ideal models to identify the complex mechanisms of genetic and molecular resistance to MD.

Results: In the present study, to unravel the potential genetic mechanisms underlying resistance to MD, we performed
a genome-wide CNV detection using next generation sequencing on the inbred chicken lines with the assistance of
CNVnator. As a result, a total of 1649 CNV regions (CNVRs) were successfully identified after merging all the nine
datasets, of which 90 CNVRs were overlapped across all the chicken lines. Within these shared regions, 1360 harbored
genes were identified. In addition, 55 and 44 CNVRs with 62 and 57 harbored genes were specifically identified in line
63 and 72, respectively. Bioinformatics analysis showed that the nearby genes were significantly enriched in 36 GO
terms and 6 KEGG pathways including JAK/STAT signaling pathway. Ten CNVRs (nine deletions and one duplication)
involved in 10 disease-related genes were selected for validation by using quantitative real-time PCR (qPCR), all of
which were successfully confirmed. Finally, qPCR was also used to validate two deletion events in line 72 that were
definitely normal in line 63. One high-confidence gene, IRF2 was identified as the most promising candidate gene
underlying resistance and susceptibility to MD in view of its function and overlaps with data from previous study.

Conclusions: Our findings provide valuable insights for understanding the genetic mechanism of resistance to MD
and the identified gene and pathway could be considered as the subject of further functional characterization.
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Background
Marek’s disease (MD) is a lymphoproliferative disease of
chickens caused by a highly oncogenic Gallid alphaher-
pesvirus 2, a naturally occurring alphaherpesvirus [1],
which goes through a complex life cycle of four main
phases [2, 3]: an early cytolytic phase at 2–7 days post
infection (dpi), a latent phase around 7–10 dpi, a late
cytolytic phase and finally, a proliferation phase after 28
dpi. MD currently remains a neoplastic disease of chick-
ens of serious concerns to the global poultry industry.
The control of MD mainly relies on vaccination; how-
ever, the vaccination efficacy is being reduced due to
newly emerging strains of Marek’s disease virus (MDV)
with escalated virulence. Enhancing genetic resistance to
MD in poultry is an important long-term goal to better
control MD. Therefore, understanding of genetic basis
of resistance to MD and improving MD resistance in
chickens are of great interest for the poultry industry
and animal welfare. In order to optimally implement this
control strategy through marker assisted selection
(MAS) and to understand the etiology and mechanisms
of MD, it is necessary to identify more specific genes
and variants with respect to MD resistance.
Genetic variations play crucial roles in phenotypic

diversity [4], some of which may underlie major mecha-
nisms that account for variations in disease resistance.
The identification of structural variations and potential
genetic markers is very important for better understand-
ing of disease resistance, as well as genomic prediction
and genetic improvement by selection. There are several
types of genetic variations, where copy number variation
(CNV) is one of the important types. According to
current knowledge, CNV is a type of important genomic
structural variation which includes intermediately sized
DNA segments that have undergone submicroscopic
insertion, deletion, segmental duplication, and complex
changes of greater than 1 kilobases (Kb) to several mega-
bases (Mb) in size [5]. It is also a major source of genetic
variation underlying phenotypic diversity [6]. Following
the first two genome-wide scans for CNVs in human
genome [7, 8], a large number of CNV detection studies
have been performed, which revealed that CNVs are ubi-
quitously distributed in genome and can influence the
phenotype via regulations of gene expression and gene
dosage [9–11]. Besides, numerous studies in other
species have also shown that CNVs contributed to
phenotypic variation of complex diseases and traits [12–19],
including MD in chicken [20–22]. Two major traditional
platforms employed in CNV detection are based on SNP
chips, one is known as comparative genomic hybridization
(CGH) array, and the other is SNP genotyping array. How-
ever, due to the limitation in resolution and sensitivity, it is
difficult to exhaust small CNVs shorter than 10 kb in length
in detection and to identify the precise boundaries of CNVs.

In recent years, a variety of CNV detection approaches
based on next-generation sequencing (NGS) were proposed,
which offer promising alternatives as they have higher effect-
ive resolution and sensitivity to discover CNVs with more
types and wider size ranges. Advances in NGS have en-
hanced the new platform for more detailed characterization
of CNVs in genomes [23–25].
The primary aim of the present study is to perform a

genome-wide CNV analysis by next generation sequen-
cing in the effort to identify CNVs that may confer the
difference in genetic resistance to MD between genetic
lines. We applied deep sequencing on samples from nine
different genetic chicken lines that significantly vary in
genetic resistance to MD, including two chicken inbred
lines, line 63 and line 72, their F1 reciprocal cross, and
the recombinant congenic strains (RCS). RCSs were
developed using line 63 as the progenitor background
line and line 72 as the progenitor donor line. Eventually,
a series of 19 RCSs were generated and each contains a
random sample of 87.5% line 63 and 12.5% line 72
genome. All of the chicken lines shared a common
major histocompatibility complex B*2 haplotype, but the
MD resistance/susceptibility differs among the RCS [1].
Furthermore, CNVnator [26] was employed to generate
a comprehensive map of CNVRs and genes. qPCR was
used to validate the detected CNVRs. Our finding
provides valuable insights for understanding the genetic
mechanism of resistance to MD, and the identified genes
and pathways could greatly facilitate further functional
characterization studies.

Results
Mapping statistics and CNV detection
In this study, we performed whole genome sequencing
in nine different chicken lines (Fig. 1) using Illumina
paired-end libraries of 26 female chickens. The average
numbers of raw reads were approximately 242.26,
230.56, 127.06, 31.39, 34.50, 42.12, 61.06, 57.68 and
37.72 million for lines 63, 72, F1, and RCS-A, D, J, L, M,
X, respectively (Additional file 1: Table S1). After quality
control, an average of 30.42 to 226.30 million reads of
each chicken line were successfully aligned to the refer-
ence genome (galGal4) with the mapping levels ranging
from 90.04 to 98.10% for all the individuals. The sequen-
cing effective depth varied from an average of 5.95× for
six RCSs to an average of 19.84× for lines 63, 72 and
their F1 hybrid, and the average coverage with respect to
the reference genome was 88.25%. These high quality
alignments provide confident for the subsequent analysis
with a minimum of false positives.
We then applied the CNVnator software for CNV

detection and the average number of CNVs per line, that
passed our stringent filtering criteria, was 1888, ranging
from 1368 in line RCS-A to 2476 in line RCS-J. The size
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of these CNVs ranges from 1 Kb to 9.56Mb, with an
average of 95.56 Kb. Detailed statistics of CNV calls are
shown in Additional file 2: Table S2. A total of 1649
CNV regions (CNVRs) (Table 1) allowing for CNV over-
laps of 1 bp or greater were obtained across all the
chicken lines after merging, covering autosomes 1–28,
and sex chromosomes Z and W. The chicken CNV map
across the genome is shown in Fig. 2. The length of
CNVRs ranged from 1 Kb to 18.19Mb with an average
of 0.36Mb. In total, 1200 (72.8%) out of all CNVRs had

sizes varying from 1 to 200 Kb (Fig. 3a). The count of
CNVRs on each chromosome was directly proportional
to the chromosome length, and five macrochromosomes
(chr1–5) possessed a large proportion (874, 53.0%) of all
putative CNVRs. The number of CNVRs in different
chicken lines varied greatly, ranging from 536 in RCS-L
to 852 in RCS-A. Among all CNVRs, 495 (30.02%) were
present in only one chicken line and 90 (5.46%) CNVRs
are shared in all the nine chicken lines (Fig. 3b). In
addition, the CNVRs belonging to gain and loss account

Fig. 1 The chicken population used in this study. Chicken lines labeled blue were selected for CNV detection

Table 1 Summary statistics of line-specific and shared CNVRs

Group No. of CNVRs Gain Loss Total Common Harbored genes Line-specific Gain Loss Harbored genes

63 1193 210 983 1649 90 1360 55 4 51 62

72 1134 205 929 44 7 37 57

F1 1111 212 899 82 4 78 135

RCS_A 722 140 582 15 1 14 41

RCS_D 801 555 246 14 7 7 33

RCS_J 949 601 348 72 23 49 300

RCS_L 1031 812 219 190 185 5 559

RCS_M 765 133 632 18 1 17 44

RCS_X 895 617 278 5 2 3 15
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for 47.1% (776 events) and 52.9% (873 events),
respectively.

Gene annotation and functional analysis
The genes harbored in the inferred CNVRs were
extracted using custom Perl scripts. As a result, a total
of 2588 RefSeq genes within the regions of the 1649
CNVRs were obtained, where a majority of these genes
were involved in immunity, tumors and diseases. The

identified genes were submitted to DAVID (version 6.8)
for GO and pathway enrichment analyses. Using func-
tional annotation clustering, at the highest classification
stringency, 145 clusters were formed, where only 9
clusters were chosen after using an enrichment cutoff of
> 1.0 (Additional file 3: Table S3). GO terms and KEGG
pathways analyses invoked in DAVID yielded 36 signifi-
cant enriched functional terms (28 terms of biological
process, 2 terms of cellular component, and 6 terms of

Fig. 2 Circos plot illustrating CNV regions in nine chicken lines. Regions with copy number events are plotted within the nine light yellow inner
tracks. Copy number changes indicated by two different statuses (deletion or duplication) are shown in the inner circle plot using the
RCircos.Histogram.Plot function in RCircos package. The outermost circle displays the chicken chromosomes (chrZ and chrW were excluded). The
circles from outside to inside represent Lines 72, 63, F1, RCS-A, M, J, D, L and X
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molecular function; P < 0.05, Fig. 4). In addition, it
yielded 6 significant enriched pathways (P < 0.05,
Table 2), including the JAK/STAT signaling pathway
(gga04630, Additional file 4: Figure S1). The detailed
information of all the GO terms and pathways are
shown in Additional file 5: Table S4.

PCA analysis and cluster
To investigate genetic structure in nine inbred chicken
lines, we performed a principal component analysis
(PCA) using the CNV segments by custom R scripts.
Nine principal components were calculated and the first
two PCs were used in the plot (Fig. 5a). The nine lines

Fig. 3 Distribution of CNVRs in nine chicken lines. a Length distribution of CNVRs. 1200 (72.8%) CNVR events are shorter than 200 kb. b Frequency
distribution of unique and overlapped CNVRs. 495 (30.02%) CNVRs occur in only one chicken line and 90 (5.46%) CNVRs are shared in all the nine
chicken lines

Fig. 4 Histogram presentation of Gene Ontology (GO) classification. The y-axis indicates the number of genes in a category, and the x-axis
indicates the three main categories: biological process (BP), cellular component (CC) and molecular function (MF). All processes listed had
enrichment P values < 0.05
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were clustered to four approximate groups with the simi-
lar patterns, as indicated by dashed circles (Fig. 5a), which
were consistent with their susceptibility to MD (Fig. 5b
[27]). Lines RCS-A, M and 72 were well clustered together
with high MD susceptibility. Lines RCS-D, J, L and X were
clustered together with high resistance to MD. Interest-
ingly enough, as expected, F1 individuals with a medium
MD resistance were in an intermediary position between
line 72 and line 63, which provided the theoretical basis to
identify imprinting genes for disease resistance.

Shared versus line-specific CNVRs
To investigate how frequently CNVRs were shared or
lineage-specific across different lines, we calculated the
CNVR numbers among the nine inbred chicken lines
(Table 1). In total, 90 CNVRs were detected across all
the individuals, which represented the commonly shared
CNVRs. A total of 55, 44, 82, 15, 14, 72, 190, 18, and 5
CNVRs were detected as line-specific CNVRs in line 63, 72,
F1, RCS-A, D, J, L, M, and X, respectively, as compared to
other lines (Table 1, Additional file 6: Table S5).

Importantly, the line 63 and 72 lineage-specific CNVRs
could potentially offer certain clues to explore the genetic
mechanisms of MD resistance or susceptibility. So, a total
of 62 and 57 harbored genes were identified in line 63 and
72, respectively, including several immune-, tumor- and
disease-related genes, such as interferon regulatory factor 2
(IRF2), suggesting that the CNV in the IRF2 gene is specific
to line 72 in this study (Additional file 7: Table S6). Inter-
estingly, our lab also found a MD-resistance associated
differentially methylated region (DMR, chr4: 38,999,001-
39,000,000), which was hypermethylated in line 63 com-
pared with line 72, in our previous DNA methylation study.
The harbored region also included IRF2, which is involved
in immune response IFN alpha/beta signaling pathway.
This gene could be a candidate gene associated with MD
susceptibility.

CNVRs validation
To confirm the identified CNVRs, 10 CNVRs containing
gains (duplications) and losses (deletions) detected here
were validated by qPCR using two reference genes

Table 2 Enriched KEGG pathways of the genes harbored in the CNVRs (P < 0.05)

Category Term Count % P-Value

KEGG_PATHWAY gga00900:Terpenoid backbone biosynthesis 10 0.45 2.31E-03

KEGG_PATHWAY gga04144:Endocytosis 49 2.22 1.92E-02

KEGG_PATHWAY gga04146:Peroxisome 20 0.90 2.10E-02

KEGG_PATHWAY gga04120:Ubiquitin mediated proteolysis 28 1.27 3.06E-02

KEGG_PATHWAY gga04630:JAK/STAT signaling pathway 25 1.13 4.65E-02

KEGG_PATHWAY gga04520:Adherens junction 17 0.77 4.85E-02

Fig. 5 a PCA plot based on the first two principal components in all the nine chicken lines. These nine lines were clustered to four approximate
groups, as indicated by dashed circles, which were consistent with their susceptibility to MD. b Histogram plot of MD incidence (%) rate. MD
resistance in chickens is generally evaluated with MD incidence (induced gross tumors by MDV) and survival days post MDV challenge. The
calculation was done as the ratio of number of birds with tumors/total number of birds challenged within each of the lines multiplied by 100
(cited from Xie et al. [27])
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(THRSP and β-actin). We found that all of the 10 CNVRs
were confirmed in agreement with the CNVnator results
(Fig. 6a), further supporting the reliability of the detected
CNVRs. We also performed a qPCR validation on two line
72 lineage-specific deletion CNVRs: CNVR6 (chr4: 38,999,
001-39,000,200, harbored gene: IRF2) and CNVR7 (chr4:
82,407,001-82,409,800, harbored gene: MAX dimerization
protein 4, MXD4). For CNVR6, a total deletion was
detected in line 72, while line 63 had a normal status. For
CNVR7, line 72 had two third of the normal copy
numbers, while line 63 also had a normal status (Fig. 6b).
Therefore, the copy numbers of these two loci were found
significantly lower in line 72 as compared to line 63, again
supporting our CNV calls and suggesting that they are
potentially linked to MD susceptibility.

Comparison with other studies on CNV in chickens
Considering that most of the previous CNV detection
studies were based on the galGal2 and galGal3 genome
assembly, coordinates of the CNVRs were converted
using the UCSC liftOver tool (http://genome.ucsc.edu/
cgi-bin/hgLiftOver). We migrated all chromosomal
CNVRs from galGal2 and galGal3 (used in previous
studies) to galGal4. We eventually obtained 585 CNVRs
in the present study for comparison. Our results were
then compared to 12 previous reports on chicken
genomic CNV (Table 3). As a result, about 3.7, 5.2 and
4.1% of the Crooijmans et al.’s [34], Tian et al.’s [35] and
Yi et al.’s [25] results can be validated in our study,
respectively. Moreover, about 12.1, 4.0 and 8.8% of the
Luo et al.’s [20], Yan et al.’s [21] and Xu et al.’s [22]
results that also involved in MD were validated in our
study. Taken together, 42.2% of our CNVRs overlapped
with these three MD studies. The detailed information

of CNVRs identified in this study and previous studies is
provided in Additional file 8: Table S7.

Discussion
MD, a complicated tumor disease, has been used as a
model for human tumor study [36]. The genetic mech-
anism underlying MD is likely to be very complex and
remains incompletely understood. Thus, it is important
to understand the genetic basis of MD-resistance or
MD-susceptibility poultry, which can provide crucial
clues for human diseases. In the present study, based on
the high throughput sequencing platform, some bioinfor-
matics analyses were conducted to identify CNVs, genes
and enriched pathways, taking full advantage of identical
genetic background in nine inbred chicken lines.
Copy number variations in the chicken genome have

been explored by many research groups in the past
decade. However, most of the previous studies focused
on CNV discoveries using low-density SNP arrays [30, 31].
With the development of high-throughput genotyping
technology, the NGS data have been used to detect the
complex diseases and traits-related CNVs. CNV detections
based on NGS data, which has much higher density
compared to SNP chip data, have been developed and
implemented in different tools [37]. There are four main
methods for detecting CNVs with NGS data: Read-Pair
(RP), Split Read (SR), Read Depth (RD), and assembly (AS)
based methods, including CNVnator [26] used here, Pindel
[38], ReadDepth [39], PEMer [40], and some other useful
methods. However, each of the methods have different
advantages and limitations in their applicability and
suitability for NGS data. CNVnator based on RD method
was the only software employed in this study. It uses the
established mean-shift approach with additional corrections
for multiple-bandwidth partitioning and GC correction, for

Fig. 6 qPCR validation. a Normalized ratio (NR) obtained by qPCR for 10 CNVRs. The y-axis shows the NR values, and the x-axis shows the CNVR ID. b
qPCR validation on two line 72 lineage-specific deletion CNVRs. The y-axis shows the NR values, and the x-axis shows the CNVR ID and chicken lines.
THRSP and β-actin served as reference genes with no variation. Samples with NR value of approximately 1 denote normal status, samples with NR
value of less than 1 denote copy-number-loss status, and samples with value of about 1.5 or more denote copy-number-gain status
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more accurate CNV detection. Previous approaches using
RD were limited to only unique regions of the
genome and discovered only large CNVs with poor
breakpoint resolution, or could not perform genotyping.
CNVnator is able to discover CNVs in a vast range of
sizes, from a few hundred bp to several Mb in length, in
the whole genome. Therefore, our results here could
reveal additional novel genetic variations underlying MD
than those revealed by SNP arrays alone.
In the present study, we performed comparisons with

the previous CNV studies, especially three researches
also involved in MD. We found 247 CNVRs covering
93.9 Mb in length that overlapped with these three MD
studies. It is interesting to note that only 7 (1.2%) and
15 (2.6%) CNVRs were shared with Luo et al.’s [20] and
Xu et al.’s [22] results using SNP chip data, which may
be, in part, related to limited sample sizes, different
platforms, different analysis methods, and different
chicken genome references (although we converted the
genome positions from two previous genome assem-
blies (galGal2 and galGal3) to a newer one (galGal4)
with the help of LiftOver based on UCSC, some infor-
mation may still be missing). More importantly, we also
used different chicken lines, especially the selected
RCSs from a total of 19 RCSs (Fig. 1). We also com-
pared with the CNV identified in lines 63 and 72 using
NGS data for MD study [21], and found that 228
(39.0%) CNVRs overlapped, which provided more ef-
fective information for our study. Moreover, our study
explored the genetic structure based on CNV in differ-
ent inbred chicken lines. The PCA showed clearly that
the first two PCs can divide all chickens into four
unique groups, which is similar to the results of Xu et al.
[22]. Therefore, our study further confirms that CNV
markers can be used to study the genetic variability in

diverse chicken lines, which could possibly contribute to
lineage-specific phenotypes.
The genetic mechanism underlying MD is likely to be

very complex and is not clear yet. It may be determined
by some specific structural variations but not a single
gene or a SNP mutation, though several candidate genes
have been reported in previous studies described above.
In the current study, we investigated CNVs among
diverse inbred lines and found 55 and 44 unique CNVRs
in lines 63 and 72, respectively, which could be associ-
ated with MD. Notably, we successfully identified a
CNVR, which was a deletion and a normal copy number
in all individuals from line 72 and line 63, respectively,
including a nearby gene IRF2. Fortunately, the IRF2 gene
was also highlighted in our previous DNA methylation
study involved in a critical DMR identified by methyl-
CpG binding domain protein enriched genome sequen-
cing (MBD-seq) with a false discovery rate (FDR) < 0.1
and validated by bisulfite cloning sequencing, which was
hypermethylated in line 63 compared with line 72. The
region of the DMR identified in previous study and the
CNVR identified here was almost completely the same,
with the same start site and a 1000 bp overlaps. The
nearby gene IRF2 is a disease- and virus-related gene
involved in the interferon gamma signaling pathway and
the immune response IFN alpha/beta signaling pathway
[41]. This gene is conserved in human and some other
species like chimpanzee, Rhesus monkey, dog, cow,
mouse, rat, zebrafish, and frog. Thus, some mutations or
structural variations of this gene could be key factors
related to disorders or diseases. It was reported that
IRF2 gene was associated with several diseases in chick-
ens like necrotic enteritis [42], pancreatic cancer [43],
and atopic dermatitis and eczema herpeticum [44]. More
interestingly, this gene can specifically bind to the upstream

Table 3 A summary of the chicken CNVRs identified in this study and previous studies

Study Platform Number of CNVRs Total length (Mb) Concordant number
with our study

Griffin et al., 2008 [28] NimbleGen 385 K 20 2.84 1

Skinner et al., 2009 [29] NimbleGen 385 K 15 2.91 2

Wang et al., 2010 [30] NimbleGen 385 K 96 16.14 4

Volker et al., 2010 [31] NimbleGen 385 K 25 5.29 1

Wang et al., 2012 [32, 33] Agilent 400 K 130 3.34 4

Crooijmans et al., 2013 [34] Aglilent 244 K 1553 61.67 57

Luo et al., 2013 [20] Agilent 400 K 33 1.92 4

Tian et al., 2013 [35] Agilent 400 K 308 10.81 16

Zhou et al., 2014 [15] Illumina 60 K 137 27.32 7

Yi et al., 2014 [25] Illumina HiSeq 2000 7530 88.12 306

Yan et al., 2015 [21] Illumina HiSeq 2000 5680 28.94 228

Xu et al., 2017 [22] Affymetix 600 K 170 0.83 15

This study Illumina HiSeq 2000 585 88.16 –
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regulatory region of type I IFN and IFN-inducible MHC class
I genes, which could be an important clue to explore the
genetic mechanisms of MD resistance because, to our know-
ledge, MHC plays an important role in the determination of
resistance to MD [1]. Therefore, IRF2 may be a very import-
ant gene related to MD according to the structural variation
identified here, its known functions and our former studies.
Another useful information obtained in this study is the
JAK/STAT signaling pathway, which was also considered as
a potential pathway responding to MDV infection reported
by Perumbakkam et al. [45]. The JAK/STAT signaling path-
way is one of a handful of pleiotropic cascades used to trans-
duce a multitude of signals for development and homeostasis
in animals [46]. JAK activation stimulates cell proliferation,
differentiation, cell migration and apoptosis. These cellular
events are critical to immune development and some other
processes. Importantly, mutations that constitutively activate
or fail to regulate JAK signaling properly cause inflammatory
disease, including several chicken diseases [47, 48]. Addition-
ally, a previous study reported that IRF2 can regulate macro-
phage apoptosis through a STAT1/3 [49], which provides
valuable and potential interaction of IRF2 and JAK/STAT
pathway and might jointly contribute to the genetic resist-
ance to MD. Therefore, we hypothesize a probable mechan-
ism of complex disease: the deletions in CNV could be
associated with different epigenetic effects, which further
regulate an interacting pathway leading to occurrence of
diseases.

Conclusions
In summary, we investigated copy number variations in
inbred chicken lines using next generation sequencing.
We have successfully identified a number of line-specific
CNVRs, as well as revealed genes and pathways that may
be involved in genetic resistance to MD. Combined with
our previous study and due to the complexity of MD, we
ultimately found a high-confidence candidate gene IRF2,
and an immune- or disease-related pathway, JAK/STAT
signaling pathway, which could jointly play potentially
important roles in response to MD resistance. Overall,
our findings in the present study will provide valuable
insights for understanding the genetic mechanism of
resistance to MD and will be worthy of further func-
tional characterization.

Methods
Experimental population
A total of 26 female chickens without treatments were
used for blood collection in this study, including three
chickens from each of the line 63 (MD-resistant), line 72
(MD-susceptible) and six recombinant congenic strains
(RCSs, RCS-A, D, J, L, M, and X), and two chickens
from reciprocal cross F1 hybrid 63 × 72 (USDA-ARS
ADOL, East Lansing, Michigan, USA) [50]. RCSs were

developed using line 63 as the parental strain mated to
line 72 and then backcrossed to line 63 twice followed by
full-sib mating for more than 20 generations (Fig. 1).
Eventually, diverse RCSs were generated and they con-
tain 87.5% of line 63 and 12.5% of line 72 in the genetic
background but differ in MD resistance/susceptibility
[51]. All the experimental chickens were anesthetized
with sodium pentobarbital (intraperitoneal injection:
150 mg/kg) at the end of this study.

Library construction and sequencing
Blood samples were collected from the brachial vein by
venipuncture. Genomic DNA (gDNA) from blood sam-
ples was extracted using the DNeasy Blood & Tissue
Mini Kit (Qiagen, USA) according to the manufacturer’s
instructions. The purity and concentration of the gDNA
samples were measured by NanoDrop ND-1000 spectro-
photometer (Thermo Scientific, USA) and by agarose gel
electrophoresis. After the examinations, paired-end
libraries were generated for each eligible sample using
standard procedures (Illumina, USA). The average insert
size was 500 bp, and the average read length was 100 bp
for line 63 and line 72, and 150 bp for the remaining
chicken lines. All libraries were sequenced on an Illu-
mina® HiSeq 2000 sequencing platform to an average
raw read sequence coverage of × 20 for lines 63, 72 and
their F1 hybrid, and × 6 for the six RCSs, respectively.
The depth ensured the accuracy and reduced the false-
negative rate of CNV calling for downstream analysis.
Library preparation and all Illumina runs were per-
formed as the standard manufacturer’s protocols.

Read alignment and CNV calling
Chicken genome assembly (galGal4) was retrieved from
the UCSC Genome Browser website (http://hgdownload.
soe.ucsc.edu/goldenPath/galGal4/bigZips/) [52]. In order
to minimize the mapping errors, quality control was
performed by FastQC [53] and low quality reads were
removed with the help of FastX Toolkit (Gordon A and
Hannon G: Fastx-toolkit: FASTQ/A short-reads prepro-
cessing tools, unpublished) and Trimmomatic using the
default parameters. The resulting FastQ files of mapping
reads of each sample were aligned to the reference gen-
ome individually using Burrows-Wheeler Aligner (BWA-
MEM) (v0.7.15) [54] with mainly default parameters.
SAMtools (v1.3) [55] was then used to convert the align-
ment results (SAM format) to BAM format and all con-
verted BAM files were sorted with the command
SAMtools. Duplicate reads were removed from individ-
ual sample alignments using MarkDuplicates in the Pic-
ard package (http://broadinstitute.github.io/picard/) to
avoid any influence on variant detection, and reads were
merged using MergeSam-Files. We additionally per-
formed local realignment using Genome Analysis
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Toolkit (GATK, v3.5) [56] to enhance the alignments in
regions of indel polymorphisms, which can greatly im-
prove the sensitivity and specificity in CNV calling [57].
After mapping, CNV calling was performed using

CNVnator (v0.3.3) software [26] based on read depth
(RD) method to predict genomic CNVs between the
nine chicken lines and the reference. CNVnator firstly
calculated the counts of mapped reads within user speci-
fied non-overlapping bins of equal size as the RD signal,
and then adjusted the signal in consideration of the
potential correlation between RD signal and GC content
of the underlying genomic sequence. The mean-shift
algorithm was employed to segment the signal with
presumably different underlying CN. Then CNVs were
predicted by applying statistical significance tests to the
segments. We then ran CNVnator with a bin size of 100
bp for our data. CNV calls were filtered using stringent
criteria including P-value < 0.05 and minimum size > 1
Kb, and calls with > 50% of q0 (zero mapping quality)
reads within the CNV regions were removed (q0 filter).
All CNV calls overlapping with gaps in the reference
genome were excluded from consideration. CNVs located
on random contigs (chrN_random), unlocalized chromo-
somes (chrUn), or in overlapping gaps were discarded for
further analysis due to the shorter length of the chrUn
contigs and mapping ambiguity of chrUn sequence reads.
In order to compare our results with previous studies, we
converted all chromosomal CNVRs from galGal2 and
galGal3 (used in previous studies) to galGal4 with the
assistance of LiftOver based on UCSC (http://genome.
ucsc.edu/cgi-bin/hgLiftOver).

Gene detection and functional analysis
Results from CNVnator were combined to obtain a
collective set of unique CNVs with different start or end
coordinates. These CNVs were then merged into non-
overlapping CNV regions (CNVRs) by aggregating CNVs
that overlap by at least 1 bp across all samples of each
chicken line. The Ensembl genes (release 85 Database)
were obtained using BioMart software based on the
chicken gene sequence assembly (galGal4) and the genes
harbored in the inferred CNVRs were extracted using
custom Perl scripts. The Database for Annotation,
Visualization, and Integrated Discovery (DAVID, version
6.8) (https://david.ncifcrf.gov/) [58] was used to perform
the gene ontology (GO) enrichment analysis and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
analysis.

Validation of CNVRs by quantitative real-time PCR (qPCR)
To experimentally validate the detected CNV calls by
CNVnator, we performed qPCR confirmation of ten
CNVRs randomly selected from line 63 and line 72, respect-
ively, using gDNA samples from different chicken lines. All

the primers were designed based on the GenBank reference
sequences using the Primer 3.0 webtool (http://frodo.wi.
mit.edu/primer3/) (Additional file 9: Table S8). The β-actin
gene and thyroid hormone responsive (THRSP) gene served
as reference genes. For each chicken line, at least three indi-
viduals were used to do the validation. qPCR using SYBR
Green PCR Kit was performed in triplicate based on iCycler
iQ PCR System (Bio-Rad). qPCR program was run as fol-
lows: pre-incubation (95 °C for 10min), 40 cycles of amplifi-
cation (95 °C for 10 s, 60 °C for 10 s, and 72 °C for 10 s),
melting curves using a heat ramp and cool down. Cycle
threshold values (Ct values) were obtained from iCycler iQ
PCR software. The 2-ΔΔCT method was used to calculate
the copy number [59–61]. The corresponding equation
was:

ΔΔCT ¼ CTtarget gene − CTreference gene
� �

sample A

− CTtarget gene − CTreference gene
� �

sample B;

where CT is the threshold cycle, sample A is the tested
individual, and sample B is the control individual with
single copy or no variation in copy number. Samples with
Normal Ratio (NR) about 1 denote normal individuals
(two copies), samples with NR of less than 1 denote one
copy loss individuals, and samples with NR about 1.5 or
more denote copy number gain individuals [32, 33].
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