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Abstract

Background: Biological pathways play an important role in the occurrence, development and recovery of complex
diseases, such as cancers, which are multifactorial complex diseases that are generally caused by mutation of
multiple genes or dysregulation of pathways.

Results: We propose a path-specific effect statistic (PSE) to detect the differential specific paths under two
conditions (e.g. case VS. control groups, exposure Vs. nonexposure groups). In observational studies, the path-
specific effect can be obtained by separately calculating the average causal effect of each directed edge
through adjusting for the parent nodes of nodes in the specific path and multiplying them under each condition.
Theoretical proofs and a series of simulations are conducted to validate the path-specific effect statistic.
Applications are also performed to evaluate its practical performances. A series of simulation studies show that the
Type I error rates of PSE with Permutation tests are more stable at the nominal level 0.05 and can accurately detect
the differential specific paths when comparing with other methods. Specifically, the power reveals an increasing
trends with the enlargement of path-specific effects and its effect differences under two conditions. Besides, the
power of PSE is robust to the variation of parent or child node of the nodes on specific paths. Application to real
data of Glioblastoma Multiforme (GBM), we successfully identified 14 positive specific pathways in mTOR pathway
contributing to survival time of patients with GBM. All codes for automatic searching specific paths linking two
continuous variables and adjusting set as well as PSE statistic can be found in supplementary materials.

Conclusion: The proposed PSE statistic can accurately detect the differential specific pathways contributing to
complex disease and thus potentially provides new insights and ways to unlock the black box of disease mechanisms.

Keywords: Causal diagram model, Causal inference, Identification, Path-specific effect

Background
Biological pathways play a key role in the occurrence,
development and recovery of complex diseases, such as
cancers, which are multifactorial complex diseases that
are generally caused by mutation of multiple genes or
dysregulation of pathways [1]. Besides biological path-
ways, improving clinical treatment, and discovering drug

targets and biomarkers, are a series of actions among
molecules (including genes and protein, etc.) in a cell
that lead to a certain product or a change in the cell [2–
6]. Recently, with the still-ongoing development of high-
throughput sequencing technology, the price is obviously
falling, large numbers of related-pathway omics data are
exponentially growing, thus it has become one of the
most important resource to analyze biological pathways
via high-throughput omics data [7]. During the past 10
years, several pathway knowledge databases have been
built, such as KEGG, BioCyc, MetaCyc, Reactome,
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RegulonDB and PantherDB [8–13]. The establishment of
these knowledge databases laid the foundation to study
pathways contributing to the occurrence, development
and recovery of complex diseases [14]. Pathway-related
knowledge databases and omics data contain a wealth of
disease-related knowledge and information, such as infor-
mation on the related-pathway genes, molecular interac-
tions in the same pathway, topology structure of pathways,
gene expression, and so on. However, how to reveal the
mechanism of biological regulation (e.g. SNP, gene and
protein) on complex disease from observational pathway-
related omics databases has become a great challenge.
Recently, some pathway analytical methods have been

proposed to study human physiology, systems biology
and modern drug development that provided the com-
putational framework for data pathway analysis and bio-
marker selection [11–17]. These methods include
functional enrichment analysis or gene set analysis
(GSA) [14], pathway analysis within a Bayesian Network
framework [15], pathway analysis approaches based on
the adaptive rank truncated product statistic [16] and a
sub-pathway-based approach to studying the joint effects
of multiple genetic variants [17]. Although, these
methods are suitable for omics data analysis in systems
epidemiology, most of them fail to take into account the
correlation degree and topological structure between
nodes (e.g. gene, SNP, etc.) from biological network.
Despite, Pathway Effect Measures (PEM) with a case-
control design [13] fully utilizes the correlation relation-
ship between nodes, it only considers the chain-specific

effects and encounters difficulties in non-linear and
interaction models. Specially, the estimation of chain-
specific effect is different from the path-specific effect
extracted from a complex network, the former one does
not take into account the influence of other adjacent
paths or nodes (e.g. parent or child nodes). Besides the
chain effect is solely marginal statistical association, but
the specific path effect is developed based on causal in-
ference and needs to adjust for necessary covariates
affecting specific path. Pearl [18] firstly defined path-
specific effects in the terms of causal diagrams. And
Avin et al. [19] provided general necessary and sufficient
conditions for their identification for a single exposure
and outcome, while Shpitser [20] generalized these defi-
nitions and conditions to settings with multiple expo-
sures, multiple outcomes, and possible hidden variables.
Miles [21] developed a suite of multiply-robust, semi-
parametric efficient estimator for the path-specific effect.
However, these methods tend to require a number of
strict assumptions which are difficult to be verified in

Fig. 1 The mTOR signal pathway. Genes colored by red are available in TCGA dataset. The pathways with red line are the statistical significance

Table 1 Type I error rates of five non-parameter methods
varying across sample sizes for total causal effect

Sample Permutation Normal CI Basic CI Percentile CI BS CI

200 0.060 0.070 0.065 0.095 0.115

400 0.080 0.070 0.065 0.075 0.085

600 0.035 0.050 0.055 0.060 0.070

800 0.055 0.050 0.055 0.050 0.070

1000 0.040 0.045 0.040 0.045 0.055
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practical applications, especially for complex network
structures in biological fields.
In order to reduce the computational burden, we pro-

posed a series of simplification process for the topology
structure of complex networks. Of note, the nodes on
specific path are only influenced by their parent nodes
according to Markov Independence property. After sim-
plification, the path-specific effect statistic PSE is esti-
mated under two conditions to detect the differential
specific paths. Therefore, the statistic PSE combined the
causal effect calculation under causal inference frame-
work with the network comparison in systems epidemi-
ology designs. To assess the performances of the statistic
PSE, theoretical proofs and statistical simulations are
conducted to evaluate the stability of type I error and
power, and a real gene expression data in Mammalian
Target Of Rapamycin (mTOR) pathway on survival time
of glioblastoma multiforme (GBM) patients are further
analyzed to validate the practicability of PSE statistic.

Application
Gliomas are the most common type of primary brain
tumor, and are histologically differentiated as astrocyto-
mas, oligodendrogliomas, and ependymomas. The World
Health Organization (WHO) classifies central nervous sys-
tem tumors into four different grades: I, II, III and IV.
Grade IV glioblastoma multiforme (GBM) is the most fre-
quent, devastating, and malignant astrocytic glioma. It is
characterized by a high degree of cellularity, vascular pro-
liferation, tumor cell chemoresistance, and necrosis. Even
after neurosurgical resection, followed by aggressive
chemotherapy and radiotherapy, GBM is still considered
an incurable malignancy. No effective treatment agent
against GBM has been identified [22–24].
The proposed PSE statistic was applied to analyze gene

expression data in Mammalian target of rapamycin
(mTOR) signal pathway (Fig. 1) of 461 white people
from TCGA datasets containing 12,071 genes by com-
paring the survival time (i.e. more VS. less than the
mean survival time), and 39 genes are successfully
mapped to this signaling pathway. The pathway mTOR,
a key mediator of phosphatidyl-inositol-3-kinase (PI3K)
signaling, has emerged as a compelling molecular target
in glioblastoma patients, although clinical efforts to tar-
get mTOR have not been successful. Here, we support
the evidence demonstrating that mTOR is a compelling
molecular target for the survival event with GBM. It was
approved by ethical committee of Medical Ethical Com-
mittee of Qilu Hospital, Shandong University, China.

Table 2 Type I error rates of five non-parameter methods
varying across sample sizes for path-specific effect

Sample Permutation Normal CI Basic CI Percentile CI BS CI

200 0.005 0.000 0.000 0.000 0.000

400 0.035 0.000 0.000 0.000 0.005

600 0.045 0.000 0.000 0.000 0.010

800 0.070 0.000 0.000 0.000 0.010

1000 0.055 0.000 0.000 0.000 0.005

Fig. 2 A complex biological network on Myocardial Infarction
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Results
Simulation
Type I error rate
Tables 1 and 2 showed the type I error rates of total
causal effects (TCE) of Calorific Excess on Myocardial
Infarction and the path-specific effects along selected
the specific path: Calorific Excess→Visceral Adiposi-
t→Inflammatory Milieu→Atherosclerosis→Myocardial
Infarction (Fig. 2), respectively. Table 1 revealed that the
type I error rates of five methods are close to the given
nominal level (α = 0.05) when sample size reached 1000
for total causal effects. While Table 2 illustrated that
only permutation tests remained stable at the nominal
level of 0.05, other methods deviated from the 0.05 nom-
inal level, when sample size reached 1000 for path-
specific effects. Therefore, PSE statistic with permutation
tests had better performances for testing total causal ef-
fect or path-specific effect.

Statistical power
Table 3 showed that the powers of five methods almost
remained invariant for testing total causal effects when
varying across the average causal effects of edges on spe-
cific path and given the fixed effect difference δ = 1 (Case
group vs. Control group). Table 4 showed the power of
permutation tests got larger for path-specific effects
when the average causal effect of each edge on target
path became larger.
Besides, Tables 5 and 6 showed that varying across the

effect difference δ of path-specific effects in case and
control group, the powers of total causal effect and
path-specific effect obviously elevated. Furthermore, we
performed sensitivity analysis to observe whether the
PSE statistic would be influenced by the parent nodes or
child nodes of nodes on specific path. Tables 7 and 8

revealed that in most cases path-specific effect statistic
PSE was not influenced by effects of their parent nodes
or child nodes. According to above simulation perfor-
mances, our proposed PSE with permutation test had
better performances and kept robust in sensitivity
analysis.
For the scenario of continuous variables, when com-

paring with the PEM [13] statistic with Bootstrap tests,
our proposed PSE statistics accurately detected the dif-
ferential pathway effects X1→X2→ Y linking X1 and Y
under two conditions for the fixed effect difference. The
PEM with Bootstrap tests detected some false positive
specific pathways (Fig. 3).

Application results
Mammalian Target Of Rapamycin (mTOR), a key medi-
ator of phosphatidyl-inositol-3-kinase (PI3K) signaling,
has emerged as a compelling molecular target in glio-
blastoma patients, although clinical efforts to target
mTOR have not been successful [22–24]. Figure 1
showed the mTOR pathway from KEGG dataset (www.
kegg.jp) that have been verified to be associated with the
survival time of glioblastoma multiforme (GBM). The
data (sample size N = 461 white people) of this pathway
(Fig. 1) containing 39 genes in red boxes were down-
loaded from “The Cancer Genome Atlas” (TCGA,
https://cancergenome.nih.gov/). We stratified the path-
specific effects according to the survival time T (T = 1 if
survival time larger than mean survival time 16.65
months of patients diagnosed with GBMs, otherwise T =
0) and adjusted for confounders including age and sex in
white people.
Furthermore, we found 14 specific pathways with stati-

sical significance (Table 9) contributing to GBM and
corresponding 17 genes, SLC7A5, mLST8, Lipin-1, Tel2,
CLIP-170, ATG1, SLC3A2, RNF152, eIF4B, GATOR1,
STRAD, IGFR, IRS1, PDK1, TSC1/6, Rheb. These genes
have also been verified in many studies. The pathway
mTOR works through the PI3K pathway through 2 im-
portant complexes, each characterized by distinct bind-
ing partners that confer different activities. In complex
with PRAS40, raptor, and mLST8/GbL, mTOR works as
a downstream activator of PI3K/Akt signaling, associat-
ing growth factor signals with protein translation, cell
growth, proliferation, and survival state. This complex is

Table 3 The powers of five methods varying across effects of each edge on target path for total causal effect

Difference δ Effect sizes Permutation Normal CI Basic CI Percentile CI BS CI

δ = 1 0.2 vs 1.2 0.075 0.080 0.075 0.100 0.100

δ = 1 0.4 vs 1.4 0.045 0.045 0.035 0.050 0.055

δ = 1 0.6 vs 1.6 0.060 0.065 0.070 0.070 0.065

δ = 1 0.8 vs 1.8 0.045 0.050 0.060 0.055 0.055

δ = 1 1.0 vs 2.0 0.035 0.040 0.045 0.045 0.045

Table 4 The power of PSE with permutation tests varying
across effects of target path effect for path-specific effect

δ ca→ vi vi→ inf inf→ at at→my Power

δ = 1 0.2 vs 1.2 0.2 vs 1.2 0.2 vs 1.2 0.2 vs 1.2 0.790

δ = 1 0.4 vs 1.4 0.4 vs 1.4 0.4 vs 1.4 0.4 vs 1.4 0.920

δ = 1 0.6 vs 1.6 0.6 vs 1.6 0.6 vs 1.6 0.6 vs 1.6 0.960

δ = 1 0.8 vs 1.8 0.8 vs 1.8 0.8 vs 1.8 0.8 vs 1.8 0.990

δ = 1 1.0 vs 2.0 1.0 vs 2.0 1.0 vs 2.0 1.0 vs 2.0 1.000
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known as mTORC1. In complex with rictor, mSIN1, pro-
tor, and mLST8 (mTORC2), mTOR works as an up-
stream effector of Akt [24]. Upon growth factor
receptor-mediated activation of PI3K, Akt is recruited to
the membrane through the interaction of its pleckstrin
homology domain with PIP3, thus exposing its activation
loop and enabling phosphorylation at threonine 308
(Thr308) via the constitutively active phosphoinositide
dependent protein kinase 1 (PDK1) [25–27]. Akt acti-
vates mTORC1 via inhibitory phosphorylation of TSC2,
which along with TSC1, negatively regulates mTORC1
through inhibiting the Rheb GTPase, a positive regulator
of mTORC1. mTORC1 impairs PI3K activation in
growth factor-stimulated cells by downregulating IRS 1
and 2 and PDGFR [24, 28, 29]. The pathway mTORC1
regulates SREBP via regulating the nuclear entry of lipin
1, a phosphatidic acid phosphatase. Dephosphorylated,
nuclear, catalytically active lipin 1 help nuclear remodel-
ing and mediate the effects of mTORC1 on SREBP target
gene, SREBP promoter activity, and nuclear SREBP pro-
tein abundance. Inhibition of mTORC1 in the liver sig-
nificantly impairs SREBP function and makes mice
resistant, in a lipin 1-dependent fashion, to the hepatic
steatosis and hypercholesterolemia induced by a high fat
and cholesterol diet. These findings developed lipin 1 as
a key component of the mTORC1-SREBP pathway [25].
Some studies provided evidence that ATG1 was the pre-
ferred translation initiation site in 8MGBA, and that en-
dogenous SETMAR were very stable proteins [25]. In
summary these data allowed us to propose that en-
dogenous SETMAR proteins can contain the α-peptide
in their N-terminal part, at least at some stages of GBM

biogenesis [26]. The gene Rheb acts downstream of
TSC1/TSC2 and upstream of mTOR to regulate cell
growth. Both IGF-IR and IGF-IIR were overexpressed in
GBMs compared with normal brain (P < 10(− 4) and P =
0.002, respectively). Moreover, with regard to standard
clinical factors, IGF-IR positivity was identified as an inde-
pendent prognostic factor associated with shorter survival
(P = 0.016) and was associated with a less favourable re-
sponse to temozolomide [27]. The pathway mTOR regu-
lates eIF4B phosphorylation in response to amino-acid
refeeding [30]. Glioblastoma is the most aggressive brain
cancer with the poor survival rate. A microRNA, miR-451,
and its downstream molecules, STRAD, are known to play
a centrol role in regulating a biochemical balance between
rapid proliferation and invasion in the presence of meta-
bolic stress in microenvironment [31].

Discussion
System epidemiology couples traditional epidemiology
with modern high-throughput technologies which seek
to integrate pathway-based (or network-based) analysis
into observational study designs to enhance the under-
standing of biological processes in the human organism.
It provides a ways to organize and study the inter-
dependencies of factors (e.g., genes, proteins, metabo-
lites) at a human population level. Within this frame-
work, the identification of pathways effects responsible
for specific diseases has been one of the essential tasks.
In the framework of bioinformatics, various methods
existed for inferring biological networks aiming to mine
underlying networks for identifying biological modules,
clustering interactions, and topological features of the
network such as degree and betweenness centrality [32–
34]. Despite these procedures for distinguishing specific
pathway (or network) topology between different disease
status, statistical inference at a population level remains
unsolved, and further development is still necessary.
Because, in practice, complexity of network tend to

render it difficult to accurately detect the pathway con-
tribution to disease, the simplification process of com-
plex network is very crucial for identifying the target
pathways. Based on the aim of identification of path-
specific effects, we proposed a series of simplification
process to simplify and abstract the topology structure

Table 5 The powers of five methods varying across effect difference δ for total causal effect

δ Effect sizes Permutation Normal CI Basic CI Percentile CI BS CI

δ = 0.5 0.5 vs 1.0 0.045 0.045 0.050 0.055 0.060

δ = 1.0 0.5 vs 1.5 0.045 0.050 0.060 0.070 0.070

δ = 1.5 0.5 vs 2.0 0.055 0.060 0.050 0.055 0.065

δ = 2.0 0.5 vs 2.5 0.080 0.110 0.125 0.120 0.130

δ = 2.5 0.5 vs 3.0 0.350 0.380 0.380 0.385 0.365

δ = 3.0 0.5 vs 3.5 0.700 0.735 0.765 0.725 0.730

Table 6 The power of PSE with Permutation tests varying
across the effect difference δ under two conditions for path-
specific effect

δ ca→ vi inf→ at at→my Power of PSE

δ = 0.5 0.5 vs 1.0 0.5 vs 1.0 0.5 vs 1.0 0.395

δ = 1.0 0.5 vs 1.5 0.5 vs 1.5 0.5 vs 1.5 0.920

δ = 1.5 0.5 vs 2.0 0.5 vs 2.0 0.5 vs 2.0 0.970

δ = 2.0 0.5 vs 2.5 0.5 vs 2.5 0.5 vs 2.5 0.945

δ = 2.5 0.5 vs 3.0 0.5 vs 3.0 0.5 vs 3.0 0.955

δ = 3.0 0.5 vs 3.5 0.5 vs 3.5 0.5 vs 3.5 0.970
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of complex network (Fig. 4). Of note, the nodes of path-
specific is only influenced by their parent nodes accord-
ing to Markov Independence property. This simplifica-
tion process greatly reduce the complexity of network
structure and maintain the key factors affecting the tar-
get specific paths. Currently in the field of causal infer-
ence, most methods mainly focus on the simple and
easily understandable causal diagrams, but the simplifi-
cation is the crucial first step to feasibly serve to real
world.
After simplification, calculation and tests of path-

specific effect also became feasible. We proposed a non-
parameter riverway conflux-based non-parameter causal
diagram model for identifying the path-specific effects in
systems epidemiology. Simulation studies revealed our
proposed PSE with permutation tests could efficiently
identify the statistically different pathways. Table 1 re-
vealed that the type I error of five methods are close to
the given nominal level (α = 0.05) when sample Jsize
reached 1000. While Table 2 illustrated that only PSE
with permutation tests remained stable, other methods
deviated from the nominal level 0.05, when sample size
were larger than 1000. Therefore, PSE statistic with per-
mutation tests had better performances for testing total
causal effect or path-specific effect. Table 3 revealed that
the powers of five methods almost remained invariant
for total causal effect when the average causal effects β
of edge on the specific path became larger and the effect
difference δ was set to 1. On the contrary, the power of
permutation tests got larger and was close to 1 for the

path-specific effect as average causal effect went up. Be-
sides, Tables 5 and 6 revealed that varying across the ef-
fect differences δ, the power on total causal effect and
path-specific effect obviously elevated. Furthermore, we
performed sensitivity analysis to observe that in most sit-
uations, PSE statistic would be not influenced by the
parent nodes or child nodes of nodes on specific path
(Tables 7 and 8).
In application analysis, the proposed typical PSE statis-

tic was applied to analyze gene expression data in Mam-
malian target of rapamycin (mTOR) signal pathway (Fig.
1) of 461 white people from TCGA datasets containing
12,071 genes, 39 genes are successfully mapped to this
signaling pathway. The pathway mTOR, a key mediator
of phosphatidyl-inositol-3-kinase (PI3K) signaling, has
emerged as a compelling molecular target in glioblast-
oma patients, although clinical efforts to target mTOR
have not been successful. Here, we support the evidence
demonstrating that mTOR is a compelling molecular
target in GBM.
Figure 1 showed the mTOR pathway from KEGG

dataset (www.kegg.jp) that have been verified to be asso-
ciated with the survival time of glioblastoma multiforme
(GBM) [32–34]. The data (sample size N = 461 white
people) concerning this pathway containing 39 genes in
red boxes were downloaded from “The Cancer Genome
Atlas” (TCGA). Our studies results obtained 14 statisti-
cally significant positive pathways (Table 9). We strati-
fied the path-specific effects according to the survival
time T (T = 1 if survival time larger than mean survival
time 16.65 months of patients diagnosed with GBMs,
otherwise T = 0) and adjusted for confounders including
age and sex. Furthermore, we found 14 statistically posi-
tive specific pathways (Table 9) and most gene have
been verified in many studies.

Conclusion
In the framework of systems epidemiology, the proposed
permutation-based PSE are valid and powerful for de-
tecting the specific pathway effect contributing to dis-
ease, thus potentially providing new insights and ways to
unlock the black box of disease mechanism.

Table 7 The performances of PSE with permutation tests varying across the effects of edges from parent nodes not on target path
to nodes on target path

Effect difference ph→ vi hdl→ at tr→ at hy→ at glu→ at Power

δ = 1.0 0.2 vs 1.2 0.2 vs 1.2 0.2 vs 1.2 0.2 vs 1.2 0.2 vs 1.2 0.925

δ = 1.0 0.4 vs 1.4 0.4 vs 1.4 0.4 vs 1.4 0.4 vs 1.4 0.4 vs 1.4 0.965

δ = 1.0 0.6 vs 1.6 0.6 vs 1.6 0.6 vs 1.6 0.6 vs 1.6 0.6 vs 1.6 0.960

δ = 1.0 0.8 vs 1.8 0.8 vs 1.8 0.8 vs 1.8 0.8 vs 1.8 0.8 vs 1.8 0.935

δ = 1.0 1.0 vs 2.0 1.0 vs 2.0 1.0 vs 2.0 1.0 vs 2.0 1.0 vs 2.0 0.935

Table 8 The performances of PSE with permutation tests
varying across the effect differences of edges from nodes on
target path to their child nodes not on target path

Effect differences vi→ pl vi→ ins inf→ ins Power

δ = 1.0 0.2 vs 1.2 0.2 vs 1.2 0.2 vs 1.2 0.923

δ = 1.0 0.4 vs 1.4 0.4 vs 1.4 0.4 vs 1.4 0.915

δ = 1.0 0.6 vs 1.6 0.6 vs 1.6 0.6 vs 1.6 0.960

δ = 1.0 0.8 vs 1.8 0.8 vs 1.8 0.8 vs 1.8 0.960

δ = 1.0 1.0 vs 2.0 1.0 vs 2.0 1.0 vs 2.0 0.965
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Methods
Complex network simplification rules (Fig. 4)
For specific path in complex network, we proposed
some rules to simplify complex networks and extract
specific path from complex network. Remove irrele-
vant variables from the causal diagram including (i)
no causal effect on the variables of target path (e.g.
C1 in Fig. 4) and (ii) no causal effect on any variable
in the adjustment set (e.g. C2 in Fig. 4). These vari-
ables will not induce spurious association so can be
ignored. Besides considering the influence of direct
and indirect causal effect, we need to merge all direct
and indirect causal paths between two variables. Fi-
nally, confounding paths or non-causal path remained
in simplified causal diagram paths.

Path-specific effect statistic PSE
For the sake of illustration, we take the specific path
X1→ X2→ Y (Fig. 5) as an example. We wish to calcu-
late the path-specific effect based on the average causal
effect. Firstly, according to the expectation dependence
of X1 and Y, we have

E Y x
0
1

��� �
−E Y x″1

��� � ¼ −
Z þ∞

−∞
F y x

0
1

��� �
−F y x″1

��� �n o
dy

ð1Þ

and ∂EðY jx1Þ
∂x1

¼ −
Rþ∞
−∞

∂Fðyjx1Þ
∂x1

dy.
Take the causal diagram depicted in Fig. 5a as a special

case, the average causal effect (ACE) of X1 on Y is used
to compare the effects of two different levels of X1, i.e.,

Fig. 3 The performances of PSE and PEM statistics for detecting three pathways

Table 9 The detected pathways with statistical significance contributing to survival time in GBM patients

Path list PSE SE P value

SLC7A5→mLST8→ Lipin-1 2.11046 0.995 0.017

SLC7A5→ Tel2→ CLIP-170 1.977606 0.99 0.023

SLC7A5→ Tel2→ Lipin-1 1.718378 0.8765 0.025

SLC7A5→ Tel2→ ATG1 2.595217 1.077 0.008

SLC3A2→mLST8→ Lipin-1 3.461764 1.203 0.002

SLC3A2→ Tel2→ CLIP-170 2.021598 0.93 0.015

SLC3A2→ Tel2→ Lipin-1 1.94616 0.966 0.022

SLC3A2→ Tel2→ ATG1 2.742903 1.198 0.011

RNF152→mLST8→ eIF4B −2.32003 1.214 0.028

GATOR1→ Tel2→ CLIP-170 1.806073 1.01 0.037

GATOR1→ Tel2→ ATG1 1.791135 1.02 0.04

STRAD→Tel2→ CLIP-170 1.754709 1.029 0.044

IGF→ R→ IRS1→ PDK1→ TSC1/6→ Rheb→mLST8→ eIF4B 1.143228 0.691 0.049

IGF→ IRS1→ PDK1→mLST8→ eIF4B 1.151496 0.675 0.044
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x
0
1 and x″1 . Since p(c| do(x1)) = p(c) and p(y| c, do(x1)) =
p(y| c, x1), we obtain

ACE X1→Y jdo x
0
1

� �
; do x″1

� �� �
¼

Z
p cð ÞE Y jc; x0

1

� �
dc−

Z
p cð ÞE Y jc; x″1

� �
dc:

Similarly, we obtain the ACE of X1 on X2 as

ACE X1→X2jdo x
0
1

� �
; do x″1

� �� �
¼

Z
p cð ÞE X2jc; x0

1

� �
dc−

Z
p cð ÞE X2jc; x″1

� �
dc:

From p(c| do(x2)) = p(c) and p(y| c, do(x2)) = p(y| c, x2),
we have

ACE X2→Y jdo x
0
2

� �
; do x″2

� �n o
¼

Z
p cð Þ E Y jc; x0

2

� �
−E Y jc; x″2

� �n o
dc

Case of continuous variables
We first consider the case of continuous variables
depicted in Fig. 5b. By C = (C1, C2), X1 ⊥ Y ∣ (C2, X2),
we obtain

E Y jc; x1ð Þ ¼
Z

E Y jc; x1; x2ð Þp x2jc; x1ð Þdx2

¼
Z

E Yjc; x2ð Þp x2jc; x1ð Þdx2

¼
Z

E Y jc; x2ð Þ ∂F x2jc; x1ð Þ
∂x2

dx2

Applying integration by parts and definite integration:

EðY jc; x′1Þ−EðY jc; x′′1 Þ ¼
Z

∂fFðx2jc; x′1Þ−Fðx2jc; x′′1 Þg
∂x2

EðY jc; x2Þdx2

¼ −
Z

fFðx2jc; x′1Þ−Fðx2jc; x′′1 Þg
∂EðY jc; x2Þ

∂x2
dx2

¼ −
Z

fFðx2jc1; c2; x′1Þ−Fðx2jc1; c2; x′′1 Þg
∂EðY jc1; c2; x2Þ

∂x2
dx2

¼ −
Z

fFðx2jc1; c2; x′1Þ−Fðx2jc1; c2; x′′1 Þg
∂EðY jc2; x2Þ

∂x2
dx2

ð2Þ
If the distribution dependence is non-decreasing, so is

the expectation dependence.
Theorem 1: For the specific path X1→ X2→ Y with

confounders C, any x
0
2 > x″2 , we have

ACE X1→Yjdo x
0
1

� �
; do x″1

� �n o
¼ ACE X1→X2jdo x

0
1

� �
; do x″1

� �� �
ACE X2→Y jdo x

0
2

� �
; do x″2

� �� �
x0
2−x

″
2

if satisfy the conditions:

1) ∂EðY jc;x2Þ
∂x2

⊥C
or

2) ½EðX2jc; x0
1Þ−EðX2jc; x″1 Þ�⊥C

Fig. 4 Simplified complex network. 1) single conflux path; 2) single diffluent path; 3) colliding path by two diffluent paths; 4) confounding path
by two conflux path; 5) mediator path linking by a diffluent path and conflux path

Fig. 5 Causal diagrams for specific path X1→ X2→ Y with C = (C1, C2). a C1 is independent of C2; b C1 is associated with C2
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Proof: For condition 1, according to Eqs. 1 and 2, we
have

ACE X1→Y jdo x
0
1

� �
; do x″1

� �n o
¼

Z
p cð Þ

Z
F x2jc; x″1
� �

−F x2jc; x0
1

� �n o ∂E Y jc; x2ð Þ
∂x2

dx2dc

¼
Z

p cð Þ ∂E Y jc; x2ð Þ
∂x2

Z
F x2jc; x″1
� �

−F x2jc; x0
1

� �n o
dx2dc

¼
Z

p cð Þ ∂E Y jc; x2ð Þ
∂x2

Z
F x2jc; x″1
� �

−F x2jc; x0
1

� �n o
dx2dc

¼
Z

p cð Þ ∂E Y jc; x2ð Þ
∂x2

E X2jc; x0
1

n o
−E X2jc; x″1

� �n o
dc

¼ ∂E Y jc; x2ð Þ
∂x2

ACE X1→X2jdo x
0
1

� �
; do x″1

� �� �

By Eq. 2, the effect of X2 on Y can be written as

ACE X2→Y jdo x
0
2

� �
; do x″2

� �n o
¼

Z
p cð ÞE X2jc; x0

2

� �
−E X2jc; x″2

� �
dc

¼
Z

p cð Þ ∂E Y jc; x2ð Þ
∂x2

x
0
2−x

″
2

� �
dc

¼ ∂E Y jc; x2ð Þ
∂x2

x
0
2−x

″
2

� �
From above two equations, we obtain

ACE X1→Yjdo x
0
1

� �
; do x″1

� �n o
¼ ACE X1→X2jdo x

0
1

� �
; do x″1

� �� �
ACE X2→Y jdo x

0
2

� �
; do x″2

� �� �
x0
2−x

″
2

Similarly, for condition 2, we can obtain

ACE X1→Y jdo x
0
1

� �
; do x″1

� �n o
¼

Z
p cð Þ

Z
F x2jc; x″1
� �

−F x2jc; x0
1

� �h i ∂E Y jc; x2ð Þ
∂x2

dx2dc

¼
Z

p cð Þ ∂E Y jc; x2ð Þ
∂x2

Z
F x2jc; x″1
� �

−F x2jc; x0
1

� �h i
dx2dc

¼
Z

p cð Þ ∂E Y jc; x2ð Þ
∂x2

Z
F x2jc; x″1
� �

−F x2jc; x0
1

� �h i
dx2dc

¼
Z

p cð Þ ∂E Y jc; x2ð Þ
∂x2

E X2jc; x0
1

n o
−E X2jc; x″1

� �h i
dc

¼ E X2jc; x0
1

n o
−E X2jc; x″1

� �h i
EC

∂E Y jc; x2ð Þ
∂x2

	 


We also have

ACE X2→Y jdo x
0
2

� �
; do x″2

� �n o
¼

Z
p cð ÞE Y jc; x0

2

� �
−E Y jc; x″2

� �
dc ¼ x

0
2−x

″
2

� �
EC

∂E Y jc; x2ð Þ
∂x2

	 


and

ACE X1→X2jdo x
0
1

� �
; do x″1

� �n o
¼

Z
p cð ÞE X2jc; x0

1

� �
−E X2jc; x″1

� �
dc

¼ E X2jc; x0
1

� �
−E X2jc; x″1

� �
Thus we obtain

ACEfX1→Y jdoðx′1Þ; doðx′′1 Þg

¼ ACEfX1→X2jdoðx′1Þ; doðx′′1 ÞgACEfX2→Y jdoðx′2Þ; doðx′′2 Þg
x′2−x

′′
2

ð3Þ
In observational studies, in order to estimate the

causal effect, we need to adjust for the parent nodes of
nodes on the specific path. For instance, for the causal
diagram in Fig. 6, according to the back-door criteria
and do-calculus [18], the specific path effect of X1→
X2→ Y, we need to separately adjust for C1 and C2 by
linear regression as follows,

ACEfX1→Y jdoðx′1Þ; doðx′′1 Þg
¼ ∂EðX2jX1;C1Þ

X1

∂EðY jX2;C2Þ
X2

ð4Þ

Case of discrete variables
Similarly the results for case of discrete variables
can be proved by substituding the partial differenti-
ation and the integration into differencing between
adjacent level and summation, respectively. We
have

EðY jc; x1Þ ¼
XM
m¼0

pðX2 ¼ mjc; x1ÞEðY jc;X2 ¼ mÞ

¼
XM
m¼0

fpðX2≤mjc; x1Þ−pðX2≤m−1jc; x1ÞgEðY jc;X2 ¼ mÞ

¼ EðY jc;X2 ¼ MÞ−
XM−1

m¼0

fpðX2≤mjc; x1ÞgfEðY jc;X2 ¼ mþ 1Þ−EðY jc;X2 ¼ mÞg

Thus, similar to Eq. 4, we obtain

ACEfX1→Y jdoðx′1Þ; doðx′′1 Þg ¼
X
c

pðcÞEðY jc; x′1Þ−
X
c

pðcÞEðY jc; x′′1 Þ

¼
X
c

pðcÞf
XM−1

m¼0

PðX2≤mjc; x′1Þ−PðX2≤mjc; x′′1 Þg � fEðY jc;X2 ¼ mþ 1Þ

−EðY jc;X2 ¼ mÞg:

Similar to Eq. (1), we have

ACEfX1→X2jdoðx0
1Þ; doðx″1 Þg ¼

X
c

pðcÞ
X
x2

fpðX2≤x2

jc; x0
1Þ−pðX2≤x2jc; x″1 Þg:

From Eq. (2), for binary X1, X2 and Y, and C is a
discrete variable which may have multiple values under
the condition of [E(Y| c, X2 =m + 1) − E(Y| c, X2 =m)] ⊥
C. We have

ACEfX1→Y jdoðx′1Þ; doðx′′1 Þg

¼ ACEfX1→X2jdoðx′1Þ; doðx′′1 ÞgACEfX2→Y jdoðx′2Þ; doðx′′2 Þg:

Extension to the case of multiple mediators
In specific path X1→X2→⋯→XK→ Y with continuous
confounders C, for any x

0
i > x″i ; i ¼ 1; 2;⋯;K , we have
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For a discrete variable C, we have

ACE X1→Y jdo x
0
1

� �
; do x″1

� �Þn o
¼ ACE X1→X2jc; do x

0
1

� �
; do x″1

� �n o
ACE X2→X3jc;do x

0
2

� �
; do x″2

� �n o
⋯ACE XK→Y jc; do x

0
K

� �
; do x″K

� �n o
:

In observational studies, according to back-door criteria
and do-calculus [18], for the causal diagram in Fig. 5, the
specific path effect of X1→X2→ Y via adjusting for
the binary parent nodes C1 and C2 is

ACE X1→Y jdo X1 ¼ x
0
1

� �
;do X1 ¼ x″1

� �n o

¼
X
C1

P X2jX1 ¼ x
0
1;C1

� �
−PðX2jX1 ¼ x″1 ;C1Þ

� �
P C1ð Þ

" #

�
X
C2

P Y jX2 ¼ x
0
2;C2

� �
−PðY jX2 ¼ x″2 ;C2Þ

� �
P C2ð Þ

" #
:

Path-specific statistic for two comparisons
The proposed path-specific effect statistic (PSE) was
based on product of average causal effect (ACE) of each
directed edge, and took difference under two conditions
(e.g., exposure vs. non-exposure, case vs. control). In
order to identify the specific path X1→ Y the standard-
ized path-specific effect in the exposure or case group
was defined as

PSE1 ¼
ACE1 X1→Y jdo x

0
1

� �
; do x″1

� �� �
SACE1 X1→Y jdo x01ð Þ;do x″1ð Þf g

:

While for non-exposure or control group, the stan-
dardized path-specific effect was

PSE0 ¼
ACE0 X1→Y jdo x

0
1

� �
; do x″1

� �� �
SACE0 X1→Y jdo x01ð Þ;do x″1ð Þf g

where ACE1fX1→Y jdoðx0
1Þ; doðx″1Þg , ACE0fX1→Y jdoð

x
0
1Þ; doðx″1 Þg denoted separately the average causal effect
in case and control group, SACE1fX1→Y jdoðx01Þ;doðx″1 Þg and

SACE0fX1→Y jdoðx01Þ;doðx″1 Þg denoted the standard error of

ACE1fX1→Y jdoðx0
1Þ; doðx″1 Þg and ACE0fX1→Y jdoðx0

1Þ;
doðx″1Þg in case and control group, respectively. Hypoth-
esis tests were performed to test whether the two path-
specific effects had significant statistical difference. The
null hypothesis and alternative hypothesis were separ-
ately equal to

H0 : PSE1 ¼ PSE0 H1 : PSE1≠PSE0

and the test statistic PSE was

PSE ¼ PŜE1‐PŜE0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var PŜE1‐PŜE0ð Þ

p :

The proposed PSE statistic was developed to test the
difference of path-specific effects under two conditions.

Non-parametric permutation and bootstrap tests of PSE
To test whether the specific path contributed to the dis-
ease end point, we conducted a series of hypothesis tests.
The permutation-based hypothesis tests were conducted
as follows: 1) draw a large number of data on disease
status (e.g., case and control group) without replacement
and estimate PSE in each group, and make difference be-
tween two groups and then forms our statistic PSE; 2)
Repeat this process to form a permutation distribution
under the condition H0 is true; 3) obtain the value of
statistic actually observed in study and locate the value
in permutation distribution to get the P value; 4) reject

ACEfX1→Yjdoðx′1Þ; doðx′′1 Þg ¼ ACEfX1→X2jdoðx′1Þ; doðx′′1 ÞgACEfX2→X3jdoðx′2Þ; doðx′′2 Þg⋯ACEfXK→Y jdoðx′K Þ; doðx′′K ÞgYK
i¼2

x′i−x
′′
i

:

Fig. 6 The causal graph linking X1 and Y in case and control groups. The dash colored line denotes the differential directed edge and X1→
X2→ Y is the unique differential path linking X1 and Y
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the null hypothesis (H0 : PSE1 = PSE0) if the P value is
less than 0.05 [22]. While bootstrap tests were per-
formed as follows: 1) draw a large number of bootstrap
samples (e.g., 1000) and estimate PSE by two groups to
form a bootstrap distribution; 2) define the 95% confi-
dence interval (CI) of the bootstrap distribution; and 3)
reject the null hypothesis (H0 : PSE1 = PSE0) if the CI
does not include zero [23]. Three bootstrap interval
methods were used including,

1) The Standard Norm Bootstrap Confidence Interval:

θ̂−zα=2seB θ̂
� �

; θ̂ þ zα=2seB θ̂
� �� �

2) The Basic Bootstrap Confidence Interval:

θ̂ Bþ1ð Þα=2½ �; θ̂ Bþ1ð Þ 1−α=2ð Þ½ �
� �

3) The Percentile Bootstrap Confidence Interval:

2θ̂−θ̂
�
Bþ1ð Þ 1−α=2ð Þ½ �; 2θ̂−θ̂

�
Bþ1ð Þ α=2ð Þ½ �

� �

4) Bias correct confidence interval:

θ̂
�
Φ að Þ; θ̂

�
Φ bð Þ

� �
where a ¼ ð z_0 þ z

_
0þzα=2

1− a
_ ð z_0 þ zα=2Þ

Þ; b ¼ Φð z_0

þ z
_

0þz1−α=2

1− a_ ð z_0 þ z1−α=2Þ
Þ . All codes for automatic searching

specific paths linking two continuous variables and
adjusting set as well as PSE statistic can be found in sup-
plementary materials.

Simulation
Simulations were conducted to evaluate the perfor-
mances of PSE statistic in the situation of varying across
path-specific effect difference of PSE1 and PSE0 (e.g.,
Case group vs. Control group) and effects of parent
nodes or child nodes on nodes on specific path as well
as average causal effect value of every edge on specific
path. We simulated a complex network on Myocardial
Infarction and selected the target specific path: Calorific
excess→Visceral adiposit→ Inflammatory z `milieu→
Atherosclerosis→Myocardial infarction (Fig. 2) to test
our statistic. The simulation process was mainly based

on their parent nodes to generate corresponding child
nodes by logistic regression model. For instance, to gen-
erate the child node Y (Visceral) depends on corre-
sponding parent nodes X1 (Calorific) and X2 (Physical
inactivity), logit(P(Y = 1| X1, X2)) = α0 + β1X1 + β2X2. Fur-
thermore, we set different effects under two conditions
on some specific paths and then identify the specific
paths with different effects using PSE statistic.
Under the null hypothesis (PSE1 = PSE0), given the var-

ied sample sizes (N = 200, 400, 600, 800, 1000), 1000 simu-
lations were conducted to assess the type I error of the
PSE by Permutation test and the non-parametric boot-
strap tests with confidence interval (CI) estimated by Basic
bootstrap, the percentile bootstrap and bias-corrected
bootstrap methods and asymptotic normal distribution
statistic CI. Under H1 (PSE1 ≠ PSE0). Given the sample
sizes 1000, 1000 simulations were repeated to assess the
power under varied path-specific effect difference (Case
group vs. Control group) of specific path itself and their
parent nodes or child nodes as well as average causal ef-
fect value of every edge on specific path, respectively.
Similarly, for continuous variales, according to the causal

diagram in Fig. 6, we generated the simulated data via linear
regression. We specified the differential directed edge X2→
Y in case and control designs and thus led to one differential
specific path X1→X2→Y linking X1 to Y. The specific path
effect in each group can be calculated as follows.

(1) The specific path effect X1→X2→ Y by adjusting
for the parent node X3:

∂
X1

E X2jX1ð Þ
	 


∂
X2

E Y jX2;X3ð Þ
	 


:

(2) The specific path effect X1→X2→X3→ Y by
separately adjusting for the parent nodes X1 and X2:

∂
X1

E X2jX1ð Þ
	 


∂
X2

E X3jX2;X1ð Þ
	 


∂
X3

E Y jX3;X2ð Þ
	 


:

(3) The specific path effect X1→X3→ Y by separately
adjusting for the parent nodes X2 and X3:

∂
X1

E X3jX1;X2ð Þ
	 


∂
X3

E Y jX2;X3ð Þ
	 


:

Based on the pathway effects in two groups, we can
develop PSE statistic via differenting the pathway effects
in two groups.
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All simulation codes were generated by R software
available from CRAN (http://cran.r-project.org/).

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12863-020-00876-w.

Additional file 1. Codes for automatic calculating PSE statistic of all
specific paths linking any two continuous variables.
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