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RNA-seq reveals downregulated
osteochondral genes potentially related to
tibia bacterial chondronecrosis with
osteomyelitis in broilers
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Abstract

Background: Bacterial chondronecrosis with osteomyelitis (BCO) develops in the growth plate (GP) of the proximal
femur and tibia and is initiated by damage to the less mineralized chondrocytes followed by colonization of
opportunistic bacteria. This condition affects approximately 1% of all birds housed, being considered one of the
major causes of lameness in fast growing broilers. Although several studies have been previously performed aiming
to understand its pathogenesis, the molecular mechanisms involved with BCO remains to be elucidated. Therefore,
this study aimed to generate a profile of global differential gene expression involved with BCO in the tibia of
commercial broilers, through RNA sequencing analysis to identity genes and molecular pathways involved with
BCO in chickens.

Results: Our data showed 192 differentially expressed (DE) genes: 63 upregulated and 129 downregulated in the
GP of the tibia proximal epiphysis of BCO-affected broilers. Using all DE genes, six Biological Processes (BP) were
associated with bone development (connective tissue development, cartilage development, skeletal system
development, organ morphogenesis, system development and skeletal system morphogenesis). The analyses of the
upregulated genes did not indicate any significant BP (FDR < 0.05). However, with the downregulated genes, the
same BP were identified when using all DE genes in the analysis, with a total of 26 coding genes explaining BCO in
the tibia: ACAN, ALDH1A2, CDH7, CHAD, CHADL, COL11A1, COMP, CSGALNACT1, CYR61, FRZB, GAL3ST1, HAPLN1, IHH,
KIF26B, LECT1, LPPR1, PDE6B, RBP4A, SERINC5, SFRP1, SOX8, SOX9, TENM2, THBS1, UCHL1 and WFIKKN2. In addition,
seven transcription factors were also associated to BCO: NFATC2, MAFB, HIF1A-ARNT, EWSR1-FLI1, NFIC, TCF3 and
NF-KAPPAB.
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Conclusions: Our data show that osteochondral downregulated genes are potential molecular causes of BCO in
broilers, and the bacterial process seems to be, in fact, a secondary condition. Sixteen genes responsible for bone
and cartilage formation were downregulated in BCO-affected broilers being strong candidate genes to trigger this
disorder.
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Background
The broiler chickens have undergone intense genetic
and nutritional improvement, exponentially increasing
their weight gain and decreasing the slaughter age.
However, the improvement focused on the high per-
formance has overlooked some physiological charac-
teristics, such as the skeletal structure [1]. The
bacterial chondronecrosis with osteomyelitis (BCO)
affects up to 1% of all birds housed, being considered
a worldwide major cause of lameness in commercial
broilers, generating economic losses and impacting
negatively the animal welfare [2–4]. The prevalence of
lameness due the BCO can extent up to 50%, and 5%
of mortality [5], however the incidence of BCO is un-
known in most countries [2–4, 6].
BCO affect the chicken GP, where the chondrocyte

columns are irregularly aligned due to the high longitu-
dinal growth rates, being associated with the growth
plate turnover in this specie [7]. The BCO pathogenesis
is supposed to be initiated by the damage of the poorly
mineralized chondrocytes followed by colonization of
opportunistic bacteria, such as Staphylococcus aureus,
Escherichia coli, Coagulase-negative Staphylococcus and
Enterococcus spp., in the osteochondrotic clefts [2, 6, 7]
of both femur and tibia [8, 9].
Despite the fact that many opportunistic microorgan-

isms have been identified in studies focused on the in-
volvement of bacteria in the process of BCO [3, 6–12],
there are no studies exploring the genetics and molecu-
lar mechanisms involved with BCO in tibia, although,
previous studies have shown the importance of some
genes involved with BCO in the femur [13–15]. There-
fore, the aim of this study was to identify the global dif-
ferential gene expression profile in the tibia GP involved
with BCO in chickens, through the transcriptome ana-
lysis using RNA-seq of normal and BCO-affected
broilers.

Results
RNA-Seq data
An average of 17,5 million reads/sample (2 × 100 base
paired-end reads) was generated and about an average of
13 million reads/sample were kept after the data quality
control. The transcriptome had in average more than
99% of the reads mapped against the chicken reference

genome Galgal5, ranging from 98.83 to 99.26% to each
individual sample, with 73% of the reads present in
genes.

Differential gene expression
A total of 12,576 transcripts were obtained. From those,
1018 transcripts were selected with FDR < 0.05, and
grouped in three categories: protein-coding (973),
lncRNA (44) and snoRNA (1). The transcripts with
logFC < − 2.0 and > 2.0 were selected, obtaining 192 DE
genes (12 lncRNA and 180 protein-coding), being 63 up-
regulated (logFC> 2.0) (8 lncRNA and 55 protein-
coding) and 129 downregulated (logFC<− 2.0) (4
lncRNA and 125 protein-coding (112 annotated genes)
in the affected compared to healthy broilers
(Additional File 1).

Gene ontology
In the first step, 192 DE genes were used in the GO
analysis and a total of 304 Biological Processes (BP)
were identified. From those, only nine BP were sig-
nificant with FDR ≤ 0.05 (Table 1). Among these nine
BP, only six were specifically related to bone develop-
ment: connective tissue development, cartilage devel-
opment, skeletal system development, organ
morphogenesis, system development, and skeletal sys-
tem morphogenesis.
In a second step, the GO analyses were performed sep-

arating the up and downregulated genes. Using the 63
upregulated genes, the GO did not show any significant
BP. However, when the 129 downregulated genes were
used, the GO showed the same six BP that were identi-
fied when all 192 DE genes were used, with a total of 26
coding genes among the BPs (Table 2). The most
enriched BP were system development (26 genes), skel-
etal system development (15 genes), organ morphogen-
esis (14 genes), connective tissue development (12
genes), cartilage development (11 genes) and skeletal
system morphogenesis (9 genes) (Table 1).

Gene and Transcription factor (TF) network
A gene network using Cytoscape v.3.6 [16]. was per-
formed to identify connections among genes enriched
in bone bioprocesses (Fig. 1). Three genes (COMP,
COL11A1 and SOX9) were shared in all six BP, four
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genes (CDH7, CSGALNACT1, ACAN and IHH) were
shared by five BP, three genes (CHADL, CYRG1 and
LECT1) were shared by four BPs, four genes (SFRP1,
CHAB, FRZB and SOX8) were shared by three BPs
and three genes (TENM2, WFIKKN2 and ALDH1A2)
were shared by two BPs (Additional file 2). The other
genes were in only one BP (Fig. 1). In addition, regu-
latory sequence analyses for all detected genes were
performed for the 26 genes used as input at TFM-
explorer [17]. A total of 21 transcription factors (TF)
were identified from the downregulated genes. Based
on the BP from DAVID and the literature review, we
selected the most putative BCO associated TF. The
main TF, from the most to the least connected were:
NFATC2, MAFB, HIF1A::ARNT, EWSR1-FLI1, NFIC,
TCF3 and NF-KAPPAB, which were used to construct
a TF network highlighting the most connected genes
(Fig. 2).

Discussion
Tibia is a high-mineralized bone in the body, being
considered a good indicator of mineralization in os-
sification studies [18, 19]. The bacterial chondrone-
crosis with osteomyelitis (BCO) has been diagnosed
worldwide and its pathogenesis seems to be related
to the poor mineralization of chondrocytes and car-
tilage of the femur and tibia bones in fast-growing
chicken, with proliferation of opportunistic bacteria
[7]. Although several studies are available evaluating
femur, it is known that the lesion status differ be-
tween bones [3], and that high incidences of tibia
BCO has been previously reported in broilers [20].
Nowadays, there are just few studies addressing the
molecular mechanisms involved with femur BCO
[13–15] and no information regarding tibia BCO is
available which highlights the importance of our
study, since it brings novel and relevant knowledge
to the field. Furthermore, this condition is observed
in males and females, and an influence of sire line
on susceptibility for this trait has already been found
[20]. However, it is consensus that high performance
broilers are widely affected by BCO [3, 20–22],
which reinforces the importance of new studies con-
sidering tibia BCO.
Although only one commercial line was used in this

study, it is expected common molecular pathways in-
volved in the BCO development in different lines,
since this is a health condition. However, the line or
sex effect could influence the gene expression profile
related to this condition, leading to a variation in the
BCO manifestation, and should be further confirmed.
According to Wideman et al. (2012) [3], no difference
was found on the incidence of lameness between
males and females and among lines in the same type

of floor. Regarding tibia BCO, no differences between
males and females were found until 40 days, but an
effect of sire was observed, especially when broilers
were older than 6 weeks of age [20]. In our study, we
used males from a high performance commercial
broiler line since they are fast growing, heavy weight
and therefore more probable to get affected with
BCO. Therefore, if we have used other high perform-
ance commercial line, we expect that similar results
would be obtained.
In the tibia GP transcriptome, 1018 genes were DE

between normal and BCO-affects broilers. A total of
44 lncRNA were identified and these transcripts may
be related to the regulation of adjacent genes [23].
According to the position in the genome of the
NCBI database, the lncRNAs ENSGALG00000040226,
ENSGALG00000033872 and ENSGALG00000032326
are close to the genes SOX9, COL11A1 and SOX8,
respectively, and may be involved in the regulation
of these important genes for bone development. The
SOX9 and SOX8, two transcriptions factors acting on
endochondral ossification, have recently been associ-
ated to femur epiphysiolysis [15]. In the current
study, it was possible to identify several DE genes
involved with BCO development, even using a small
number of samples per group, as can be seen in sev-
eral RNA-Seq studies, when groups are well charac-
terized [24–28].
Initially, using 112 downregulated genes, a total of 26

genes enriched six BP directly related to bone and cartil-
age development (Table 2): system development (GO:
0048731), skeletal system development (GO: 0001501),
organ morphogenesis (GO: 0009887), connective tissue
development (GO: 0061448), cartilage development
(GO: 0051216) and skeletal system morphogenesis (GO:
0048705). These are important BP for bone development
and their malfunction can cause poor ossification, lead-
ing to cases of lameness, commonly observed in BCO-
affected chickens [12]. The genes related to these
biological pathways are ACAN, ALDH1A2, CDH7,
CHAD, CHADL, COL11A1, COMP, CSGALNACT1,
CYR61, FRZB, GAL3ST1, HAPLN1, IHH, KIF26B,
LECT1, LPPR1, PDE6B, RBP4A, SERINC5, SFRP1, SOX8,
SOX9, TENM2, THBS1, UCHL1 and WFIKKN2 (Fig. 1).
These are functional candidate genes associated to BCO,
as discussed below.
The aggrecan gene (ACAN) is one of the most im-

portant cartilage aggregating chondroitin [29]. This
gene is essential to the regulation of growth factors
and cartilage development [30, 31], and it is associ-
ated with diseases such as skeletal dysplasia [32],
osteoarthritis [33], osteochondritis [34, 35] and chon-
drodystrophy in chickens [36]. In addition, SOX8 and
SOX9 play an important role as transcription factors
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in the development of cartilage, controlling the differ-
entiation of chondrocytes and osteoblasts in the de-
velopment of progenitor cells [30, 31, 37–42].
The CHAD gene (Chondroadherin) is highly expressed

in cartilage and was first isolated in cattle [43], direct
binding with calcium phosphate [44]. Hessle et al. (2013)
[38] showed that CHAD has an influence on the enlarge-
ment of the epiphyseal plate and its inactivation com-
promises the hypertrophic differentiation of the
chondrocytes, as well as the cartilage composition in
rats. An important CHAD paralog is CHADL, which can
negatively regulate chondrocyte differentiation, inhibit-
ing cartilage fibrillogenesis and can be used as a marker
for cartilage diseases [45].
Collagen type XI (COL11) constitutes a triple helix

formed by COL11a1, COL11a2 and COL12a1, being an
essential component of the extracellular matrix-
regulating the diameter of the fibrils [46–49]. In the ab-
sence of COL11a1, an alternate triple helix is formed
with COL11a2 and COL5a1, but it is unable to compen-
sate for the functional deficiency of Collagen 11a1 [50].
COL11 is essential for the cartilage collagen fibrils for-
mation and for differentiation and organization of
growth plate chondrocytes [51]. The COL11a1 plays a
key role in endochondral ossification, and the low ex-
pression of this gene results in alterations in the
mineralization of newly formed bone [40].
The Cartilage Oligomeric Matrix Protein (COMP) is a

non-collagenous protein present in the extracellular

matrix of bone and cartilage, and mutation in this gene
can cause death of the chondrocytes [52]. Chondrocyte
death can be caused by the retention of COMP and
other extracellular matrix proteins within an enlarged
rugged endoplasmic reticulum, and this can lead to an
abnormal matrix that is easily eroded over time [53]. In
addition, COMP may be a potential molecular marker
for bone diseases [54–56].
The CSGALNACT1 gene encodes the N-

acetilgalactosaminiltransferase enzyme, which has activ-
ity in beginning and the elongation of the chondroitin
sulfate synthesis [57]. In rats, reduced levels of CSGAL-
NACT1 may cause post-natal lethality due to respiratory
failure, mild dwarfism and the cartilage has an abnor-
mality of endochondral ossification [58, 59].
Cysteine-Rich Angiogenic Inducer 61 (CYR61 or

CCN1) is part of the group of matricellular proteins
[60], being associated with extracellular matrix secretion
[61]. Furthermore, CYR61 has important role in regulat-
ing inflammation and possible cell repair [62]. This gene
potentiates DNA synthesis for cell proliferation induced
by other mitogens [63] in response to bacterial or viral
infection [64, 65].
Frizzled Related Protein (FRZB/SFRP-3) is part of the

set of Secreted Frizzled-Related Protein (SFRP1), which
comprises five members that modulate negatively and
positively the Wingless-type (Wnt) signaling cascade
[66]. Wnt signaling cascade is important for regulating
the development, maintenance and homeostasis of bone

Table 1 Biological Process (BP) found using DAVID 6.8. Table 1a shows nine BP using all 192 Differentially Expressed (DE genes) with
six BP associated with bone formation. Table 1b shows six BP using only 129 downregulated genes in the affected broilers. In bold
are the BP that were the same in both analyses

Category Term Pathways Count FDR

Table 1a.

GOTERM_BP_ALL GO:0061448 connective tissue development 12 1.89E-05

GOTERM_BP_ALL GO:0051216 cartilage development 11 2.46E-05

GOTERM_BP_ALL GO:0001501 skeletal system development 15 3.81E-05

GOTERM_BP_ALL GO:0009887 organ morphogenesis 17 6.34E-04

GOTERM_BP_ALL GO:0048731 system development 35 0.00825838

GOTERM_BP_ALL GO:0048705 skeletal system morphogenesis 9 0.008659783

GOTERM_BP_ALL GO:0007275 multicellular organism development 36 0.019958649

GOTERM_BP_ALL GO:0048856 anatomical structure development 39 0.026663753

GOTERM_BP_ALL GO:0044707 single-multicellular organism process 40 0.031747676

Table 1b.

GOTERM_BP_ALL GO:0001501 skeletal system development 15 2.31567E-07

GOTERM_BP_ALL GO:0061448 connective tissue development 12 3.26095E-07

GOTERM_BP_ALL GO:0051216 cartilage development 11 6.13948E-07

GOTERM_BP_ALL GO:0048705 skeletal system morphogenesis 9 0.000509513

GOTERM_BP_ALL GO:0009887 organ morphogenesis 14 0.001261476

GOTERM_BP_ALL GO:0048731 system development 26 0.049749525
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and cartilage [67]. Therefore, dysregulation of Wnt
signaling may lead to the development of osteoarthritis
in rodents [67–71].
Hyaluronan and Proteoglycan Link Protein 1 (HAPLN1/

CRTL1) is an abundant polysaccharide in the extracellular
matrix of cartilage under normal conditions and is in-
volved in cell differentiation and morphogenesis [72–
74]. Recent studies have shown that in bone diseases
in humans, such as osteoarthritis and allograft trans-
plantation, there is always a low HAPLN1 expression
[75, 76].
The Indian hedgehog (IHH) gene is expressed in cartil-

age, and it is recognized as regulator of bone develop-
ment and morphogenesis [77]. IHH induces the
differentiation of the osteogenic cell of the periosteum,
being essential in the differentiation of the osteoblasts
and in the maintenance of the growth plate, articular
cartilage and adjacent endochondral bone formation
[78–80]. Jin et al. [81] demonstrated that a deletion in

the IHH gene was responsible for the Creeper phenotype
in broilers, which is characterized by short and stunted
legs. In addition, a mutation in this gene causes brachy-
dactyly in humans [82].
Chondromodulin (CNMD) regulates the rapid growth

of cartilage and vascular invasion prior to the process of
cartilage replacement by the endochondral bone [83].
New evidence on the mechanism of differentiation of
mesenchymal stem cells (CTMs) into chondrocytes in-
duced by ChM-I shows that the main pathways involved
in the process are focal adhesion, glycolysis, regulation
of the actin cytoskeleton and the ribosome [84]. In
osteoarthritis condition, the expression of ChM-I is de-
creased. Therefore, the regulation of this gene in cartil-
age may be a potential treatment, because it protects the
chondrocytes from hypertrophy and delays the progres-
sion of osteoarthritis [85].
Retinol-binding protein (RBP4A) has the function of

transporting vitamin A in the blood, from the liver to

Table 2 Twenty-six downregulated genes associated with bone formation enriched in the Biological Processes found using DAVID
6.8 tool

Gene symbol Gene ID logFC FDR Gene Name

TENM2 ENSGALG00000001768 −4.61 4.17E-05 teneurin transmembrane protein 2

WFIKKN2 ENSGALG00000007367 −4.32 1.66E-06 WAP, follistatin/kazal, immunoglobulin, kunitz and netrin domain containing 2

RBP4A ENSGALG00000006629 −3.83 4.45E-09 retinol binding protein 4

LECT1 ENSGALG00000016945 −3.19 3.99E-03 chondromodulin

COMP ENSGALG00000003283 −3.18 4.80E-02 cartilage oligomeric matrix protein

UCHL1 ENSGALG00000014261 −3.12 1.39E-10 Ubiquitin C-Terminal Hydrolase L1

ACAN ENSGALG00000006725 −3.09 3.72E-03 aggrecan

CDH7 ENSGALG00000013782 −3.05 3.04E-05 cadherin 7

IHH ENSGALG00000011347 −3.00 3.10E-04 Indian hedgehog protein

HAPLN1 ENSGALG00000015627 − 2.97 1.51E-03 Hyaluronan and proteoglycan link protein 1

KIF26B ENSGALG00000010664 − 2.55 2.62E-02 kinesin 32 Family member 26B

PLPPR1 ENSGALG00000015542 −2.52 2.02E-05 phospholipid phosphatase related 1

COL11A1 ENSGALG00000005180 −2.47 1.51E-02 Collagen Type XI Alpha 1 Chain

GAL3ST1 ENSGALG00000007781 −2.45 1.19E-02 galactose-3-O-sulfotransferase 1

SOX9 ENSGALG00000004386 −2.40 4.58E-05 SRY-box 9

SFRP1 ENSGALG00000003473 −2.37 1.47E-03 secreted frizzled related protein 1

CHADL ENSGALG00000011970 −2.34 2.48E-07 chondroadherin like

CSGALNACT1 ENSGALG00000010125 −2.33 4.59E-06 chondroitin sulfate N-acetylgalactosaminyltransferase 1

FRZB ENSGALG00000002763 −2.33 1.35E-04 frizzled-related protein

CYR61 ENSGALG00000008661 −2.28 3.63E-07 Protein CYR61

SOX8 ENSGALG00000005263 −2.27 1.29E-04 SRY-box 8

THBS1 ENSGALG00000009626 −2.22 2.35E-02 thrombospondin-1 precursor

CHAD ENSGALG00000019761 −2.12 7.28E-03 chondroadherin

PDE6B ENSGALG00000015373 −2.11 1.67E-03 phosphodiesterase 6B

ALDH1A2 ENSGALG00000004270 −2.11 1.60E-12 Retinal dehydrogenase 2

SERINC5 ENSGALG00000014798 −2.09 6.48E-05 serine incorporator 5
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the peripheral tissues [86, 87]. Vitamin A plays an im-
portant role in the development of various organs, in-
cluding bone growth [88], contributing to bone health
[89, 90], and abnormal levels of Vitamin A may have a
negative impact on bone growth [91–94]. Moreover,
RBP4 is expressed during limb growth and this gene is
also involved in chondrogenesis, collagen X transcription
and bone mineral density [95–97].
Thrombospondin (THBS1) is a glycoprotein that regu-

lates the structure of the extracellular matrix [98] being

involved in the protection of chondrocytes, since it ex-
erts pro-chondrogenic and anti-inflammatory function
[99]. Furthermore, THBS1 seems to be important in
homeostasis and maintenance of bone matrix integrity,
and in the regulation of osteoclast formation [100].
From the 26 DE genes enriching the bone and cartil-

age development BP, 10 (ALDH1A2, CDH7, GAL3ST1,
KIF26B, PLPPR1, PDE6B, SERINC5, TENM2, UCHL1
and WFIKKN2) appear to have no direct relationship to
bone or cartilage formation. However, due to the

Fig. 2 Transcription Factor network showing connections between downregulated genes (circles) and Transcription Factors (diamonds). The size
(low values are small size) and the colors (low values are in bright colors) of the nodes indicate the number of directed edges and the
neighborhood connectivity, respectively. The Edge colors indicate the betweenness of the edges (low values are in bright colors)

Fig. 1 Gene network showing connections between downregulated genes (circles) and Biological Process (diamonds). The size (low values are
small size) and the colors (low values are in bright colors) of the nodes indicate the number of directed edges and the neighborhood
connectivity, respectively. The Edge colors indicate the betweenness of the edges (low values are in bright colors)
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complexity of these processes, the function of these
genes in the regulation of bone cells could still be un-
known, especially in chicken.

Transcription factors
Nine TF associated to downregulated DE genes were
found (Fig. 2), being three of those highly connected
(NFATC2, MAFB and HIF1A:TNA). Several studies have
shown that these TF were related to osteoblast and
osteoclast differentiation, and osteolysis [101–108] The
NFATC2 plays important role in the immune response,
and in the differentiation and regulation of osteoclast
growth [109]. Zanoti and Canalis [102] concluded that
the activation of NFATC2 may inhibit the function of
osteoblasts and decrease the volume of spongy bone.
Furthermore, NFATC2 was associated with 24 out of 26
DE genes detected as downregulated in the affected
chickens (Fig. 2). Moreover, the MAFB TF, although
expressed selectively in monocytes [110], can be found
in several tissues, and has been related to osteolysis in
humans and rats [111] by the negative regulation of im-
portant cytokines for osteoclast differentiation [105].
HIF1A regulates oxygen homeostasis, glucose transport
and generation of anaerobic energy in joints and chon-
drocytes, and may play an important role in the osteo-
arthritis metabolism [107, 112]. Four other TF were also
found with a high number of connections and appear to
be associated with osteosarcoma (EWSR1-FLI1 and
NFIC), cranium formation (TCF3), soft tissue calcifica-
tion and chondrocyte differentiation (NF-KAPPAB)
[113–117].
Clinical implications related to BCO include, but are

not limited to claudication. There is no efficient treat-
ment and the diagnosis is not possible in early stages,
being necessary to perform a necropsy. The DE genes
and transcription factors found in this study play a fun-
damental role in bone and cartilaginous development in
broilers. Their low expression in the affected chickens
seems to be related to incomplete bone formation, initi-
ating the BCO process in the tibia growth plate of fast-
growing chickens. The current findings confirm our hy-
pothesis and indicate that improvement in ossification
and cartilage formation have to be addressed in poultry
breeding programs.

Conclusions
We found 16 differentially expressed genes in the tibia
GP transcriptome that are directly responsible for bone
and cartilage formation, which were downregulated in
BCO-affected broilers. According to our data, the lack of
ossification might be the main cause of BCO in broilers,
and the bacterial process seems to be a secondary condi-
tion. Moreover, our results highlight the pathogenesis of
BCO, and show that to pursue prevention and control of

such condition, breeding strategies have to focus on the
improvement of ossification and cartilage formation.

Methods
Animals and sample collection
This study was performed at the Embrapa Swine and
Poultry National Research Center. Approximately 50
male chicks from Cobb500 commercial broiler line were
raised from 1 to 42 days of age, with a density of 12
broilers/m2 with infrared lamps. The drinkers, feeders,
curtains, light, and chickens were managed following the
recommendations for the commercial line. Diets con-
taining 3150 kcal/kg AME and 21% CP (1–21 days),
3200 kcal/kg AME and 20% CP (22–35 days), and 3200
kcal/kg AME and 18.5% CP (36–42 days) were provided.
The animals had free access to feed and water. Before
sample collection, the broilers were weighted at 42 days
of age and euthanized by cervical dislocation followed by
bleeding, according to the approval of the Embrapa
Swine and Poultry Ethical Committee of Animal Use
(CEUA), under protocol number 012/2012.
A classification of the tibia was performed according

to the presence or absence of different levels of BCO, by
visual observation of compatible necrosis lesions, ac-
cording to Wideman et al. (2012) [3]. Tibia samples with
adhesion between the growth plate (GP) and cartilage
(CA) were considered in the normal group and those
presenting separation between GP and CA were classi-
fied as the affected group. Only those with the initial
level of BCO and present in both tibias were used in this
study. For sample collection of the normal group, all CA
was removed to access the GP. The entire GP of samples
were collected, stored in liquid nitrogen and transferred
to the − 80 °C freezer for further RNA analysis. Six sam-
ples (three normal and three affected) were collected
and prepared for RNA-Seq analysis.

RNA extraction and library preparation
About 100 mg of the tibia GP tissue was used for RNA
extraction using Trizol Reagent (Invitrogen, Carlsbad,
CA) following the manufacturer’s instructions. The RNA
cleanup was performed using Rneasy mini kit (Qiagen,
Germany) following manufacturer’s instructions. After
RNA extraction, the RNA was quantified in Nanodrop
spectrophotometer (Thermo Scientific; Waltham, MA,
USA) and the Agilent 2100 BioAnalyzer (Agilent Tech-
nologies; Santa Clara, CA, USA) was used for integrity
measurement, where samples with RNA integrity num-
ber (RIN) higher than 8 were used for library prepar-
ation. A total of six tibia samples, three normal and
three BCO-affected were prepared for RNA-sequencing
using the TruSeq™ RNA Sample Prep Kit v2 (Illumina,
Inc.; San Diego CA, USA), according to the manufac-
turer’s recommendations, with 2 μg of total RNA.
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Sequencing, quality control, assembly and differential
expression analysis
The libraries were sent to the Functional Genomics Cen-
ter, ESALQ, University of São Paulo, Piracicaba, SP,
Brazil for sequencing in Illumina HiSeq2500 equipment
(Illumina, Inc.; San Diego CA, EUA), all in the same
lane, following the 2x100bp paired-end protocol.
The quality control was performed using SeqyClean

tool (https://github.com/ibest/seqyclean) with the raw
FASTQ data for removing short reads (<70pb), low
quality reads (Qphred < 24), PCR artifacts and adapter
sequences. The sequence reads were mapped against
the chicken reference genome (Gallus gallus, assembly
5.0) available in (www.ensembl.org), using BWA-MEM
software [118]. The read counting was performed with
Htseq software [119] using Ensembl annotation release
89. The edgeR package [120] in R environment [121]
was used to identify differentially expressed (DE) genes
from BCO-affected and unaffected groups. Significance
threshold for DE genes was set at a False Discovery
Rate (FDR) ≤ 0.05 after multiple correction tests to re-
duce type I error. Smear plots of DE genes were gener-
ated using the expression data for each gene within
each sample in the edgeR package from the R environ-
ment [121].

Gene ontology (GO) and network analyses
In a first step, a total of 192 DE genes with log Fold
Change (logFC) < − 2.0 and > 2.0 was used as input on
DAVID Bioinformatics Resources 6.8 tool (https://david.
ncifcrf.gov/summary), and all the identified expressed
genes were used as background. Genes with positive or
negative logFC values were considered, respectively, up-
regulated or downregulated when the BCO-affected
group was compared to the unaffected group. In a sec-
ond step, a GO analysis was performed using only up-
regulated DE genes (63 genes) and only downregulated
DE genes (129 genes).
The gene and transcription factor (TF) network ana-

lysis was built using Cytoscape 3.6.1 [16]. The output of
GO analysis was used as input on Cytoscape with each
gene associated with the correspondent biological
process. Twenty-six genes were submitted to the TFM-
Explorer program (http://bioinfo.lifl.fr/tfm-explorer/
form.php) to identify the TF related to them. From se-
quence of a set of gene promoters, TFM-Explorer
searches for locally overrepresented transcription factor
binding sites (TFBS) using weight matrices from JAS-
PAR database [122] to detect all potential TFBS, and ex-
tracts significant clusters by calculating a score function.
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