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Abstract

Background: GAW20 working group 5 brought together researchers who contributed 7 papers with the aim of
evaluating methods to detect genetic by epigenetic interactions. GAW20 distributed real data from the Genetics of
Lipid Lowering Drugs and Diet Network (GOLDN) study, including single-nucleotide polymorphism (SNP) markers,
methylation (cytosine-phosphate-guanine [CpG]) markers, and phenotype information on up to 995 individuals. In
addition, a simulated data set based on the real data was provided.

Results: The 7 contributed papers analyzed these data sets with a number of different statistical methods,
including generalized linear mixed models, mediation analysis, machine learning, W-test, and sparsity-inducing
regularized regression. These methods generally appeared to perform well. Several papers confirmed a number
of causative SNPs in either the large number of simulation sets or the real data on chromosome 11. Findings
were also reported for different SNPs, CpG sites, and SNP–CpG site interaction pairs.

Conclusions: In the simulation (200 replications), power appeared generally good for large interaction effects,
but smaller effects will require larger studies or consortium collaboration for realizing a sufficient power.

Keywords: Methylation, Interaction, Genome wide association, Region based association, Candidate gene association,
Mediation analysis, Multi-level Gaussian model, LASSO, Adaptive W-test, Regression and random forest trees

Background
Genes do not act in isolation: the expression of
gene-coded proteins is affected by many factors, including
other genes, environment, and epigenetics. These interac-
tions can complicate the identification of genes related to
a particular trait or disease because some genes with an
important effect through interaction can have a small
marginal effect. The usefulness of interaction models for
identifying causation based on disease and risk factors is
demonstrated by Ruth Othman’s 1996 seminal paper [1].
As a result of recognition of the importance of interac-
tions, a variety of methods that incorporate it were

developed, especially in the case of gene–environment
interaction. These methods include logistic [2] and gener-
alized linear models [3], and machine learning [4].
This paper surveys the findings of the papers pre-

sented at GAW20 in group 5: Gene by Methylation In-
teractions. Even though there are issues common to all
interaction approaches, each interaction type has its
own specific features. In the case of gene by epigenetic
interactions, all the mechanisms of epigenetics are not
yet fully understood. However, it is generally accepted
that methylation of a DNA strand causes loci on the
methylated span to be turned “off.” The generally avail-
able measure of methylation is the percentage of copies
of a DNA strand site that are methylated (generally in a
single individual). The expectation is that individuals
with higher levels of methylation at a site will have a
lower level of gene expression for that site. Incorporating
this expectation into a statistical analysis can simplify it, as
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compared to, for example, an analysis of an environmental
factor for which the direction and mechanism of the effect
are completely unknown. As our understanding of the re-
lationships between epigenetics and genes, environment,
and ancestral epigenetics improves, we will be able to
further refine the statistical tests for gene by epigenetic
interaction. The papers included in this group represent a
wide range of approaches facilitated by the current under-
standing of gene by epigenetic interaction.
The data for GAW20 was provided by the Genetics of

Lipid Lowering Drugs and Diet Network (GOLDN) pro-
ject [5, 6]. GAW20 also provided simulated data with
similar characteristics to the real data. While each group
gave the data a different treatment, using the same under-
lying data facilitated comparison between the methods of
the different groups. Most of the papers included in this
group focused on methods to directly detect gene by epi-
genetic interaction effects, but some also explored related
issues. The overall aim was to analyze the GAW20 data
via different methods and compare their usefulness in the
discovery of new/previously reported (with real data) or of
expected findings (simulated data).

Methods
The GAW20 group 5 applied methods to both available
types of data: real and simulated [7]. The real data set
consisted of phenotypes of high-density lipoprotein
cholesterol, triglyceride (TG) levels, and metabolic syn-
drome diagnosis, before and after treatment with fenofi-
brate, genome-wide methylation pre- and posttreatment,
and dense genome-wide single-nucleotide polymorphisms
(SNPs) from the GOLDN study. The simulated data set,
which was based on the real data, included 200 replicates
of posttreatment TG and methylation levels. The subjects
in the GOLDN study, who self-reported to be white, were
recruited at the Minneapolis, MN, and Salt Lake City, UT
Family Heart Study centers. The GOLDN study was
designed with 2 arms: a high-fat meal challenge and feno-
fibrate treatment for 3 weeks to identify genetic determi-
nants of lipid response to 2 interventions. A total of 1053
individuals met all eligibility requirements, while the data
in use for lipids at visits 1 and 2, at the start of the trial,
and at visits 3 and 4, at the end of the trial, that have
genotype and methylation were smaller [8–12]. The
GAW20 simulated data [7] followed the structure of real
data, by simulating the effects of a lipid-lowering medica-
tion in interaction with methylation by affecting TG levels.
A number of major variants, as well as a large number of
background variants, at the genotype and methylation
levels were causative of changing TG levels at visits 3 and
4. Three papers from the group studied changes on TG
(Daw et al., Fisher et al., and Sun et al). Sun et al. differ
from the other two in that they use percent change and di-
chotomized if the treatment was effective or not. Four

papers look at the average TG levels either TGpre or TGpost

(Daw et al., Romanescu et al., Veenstra et al., and Zhao and
Lo). One paper examined cytosine-phosphate-guanine
(CpG) site variation (Hu and Li).
Most papers examined real GOLDN (CpG site, SNP,

and/or TG) data. One paper analyzed the simulated data
in addition to real data (Sun et al), and one paper studied
simulated data only (Daw et al.; Table 1). The methods
employed for detecting epigenetic by genetic interactions/
main effects included generalized linear model (GLM),
mixed model, regression tree model, random forest [13],
mediation interaction model [14], gene-based test [15],
W-test [16], candidate gene approach [16] and LASSO
(least absolute shrinkage and selection operator)-type re-
gression [17] techniques. Additionally, Gaussian mixture
models were applied to examine the relationship between
methylation and genotype. For a full description of each
method, see the appropriate paper.

Results
Several methods were used to detect SNP by methylation
interactions using either simulated or real data. Some of
the real data papers conducted a genome-wide association
study, whereas others focused on either candidate genes
or chromosome 11 where a previous finding in the pro-
vided data was reported (see Table 1). Consequently, for
the real data papers we focused on comparing results on
chromosome 11 (Table 2). For assessing results in the
simulated data, we can simply compare to the known
answers.
In Daw et al. [13], GLMs, mixed models, regression trees,

and random forest models were applied to 200 replications
of simulated data. PROC GLM and PROC MIXED of SAS
were used for the linear models, taking into account the
family structure as a random effect. Four models were used:
model 1.a included the intercept, the main effects, CpG
sites and SNPs, and their interaction effect on TG post–
medication-treatment plus a vector of covariates (age, age2,
sex, and the average of log[TG1] and log[TG2] before treat-
ment); model 1.b included only the interaction effect on
TG post–medication-treatment plus the vector of covari-
ates; model 2.a included as the response variable the change
of TG (posttreatment–pretreatment) including the main ef-
fects, SNP and the methylation difference between visits 4
and 2, their interaction and covariates (age, age2, sex);
model 2.b was a reduced version of model 2.a that included
only interactions. The models 1.a and 1.b were fitted using
PROC GLM and PROC MIXED. Models 2.a and 2.b were
fitted using only PROC MIXED. Regression trees were ap-
plied using SAS (v. 9.4) and SAS Data Mining (v. 14.1), as
well as random forest in Python from the SciKit-Learn
package, to predict outcome variables by averaging the pre-
dictions of a large number of uncorrelated regression trees.
The authors tested for sensitivity using causative SNP-CpG
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site pairs and noncausative SNP-CpG site pairs to estimate
the empirical null. They identified reasonable power to de-
tect the main causative loci, depending on sample size and
strength of the effects at the SNP and CpG sites.
Sun et al. [16] worked with both simulated data and

real data. They analyzed only the 84th replication of
GAW20 simulated data. This replicate was recom-
mended as the one to use for comparing results with
other teams when not working with all 200 replicates.
Their W-test [18] checks for pairwise epistasis based
on the null hypothesis that the joint distribution of a
set of SNPs has no difference in the cases versus controls.
They tested the gene-methylation epistasis in subjects’
posttreatment using an additive model. Individuals’ treat-
ment response was dichotomized based on change from
pre-TG to post-TG levels. A change greater than 30% [19]
was defined as effective; a lesser change was defined as in-
effective. For the W-test, methylation was dichotomized
into high and low groups. Thus, the SNP-CpG site pair
forms a genetic combination of 6 categories. In addition,
Sun et al. examined logistic regression models with both
dichotomized and continuous CpG sites [16]. In their
application of 3 tests to 1 simulated replicate, they ex-
amined 10 sites: 5 “causative” and 5 “noise.” None of
the “noise” sites were significant for any of the tests.
Three of the 5 “causative” sites were significant for all 3
tests, and 1 “causative” site was marginally significant
for W-test and for the 2 logistic regression tests. The
fifth site was not detected using any of the 3 methods.
In real data they focused on chromosome 11, and applied

only their W-test. Their top 15 hits had p values from
7.5 × 10− 6 to 7.0 × 10− 5. None of these 15 were reported
by other papers in our group.
Mediation analysis was implemented by Fisher et al.

[14], who investigated change in pretreatment to post-
treatment TG levels as outcome by considering the hy-
pothesis that genotype affects change in TG level by
means of its effects on methylation. Thus, the effect of
change in methylation on change in TG differs by
genotype. For their analysis, they used a real data
sample of 406 individuals with complete genotype,
methylation, TG levels, and covariate data, performing
estimation with the coxme R package [14]. They
conducted a genome study, but none of their reported
hits were on chromosome 11. They also had no hits in
common with Veenstra et al., who also conducted
genome-wide analysis. Fisher et al’s power calculations
suggest that the available data were underpowered for
their method.
Hu and Li investigated the relation between genotype

and methylation levels pretreatment and posttreatment
via Gaussian mixture-model clustering. First, they identi-
fied CpG sites with multimodal methylation level distribu-
tions (mmCpGs). Subsequently, they identified SNPs that
segregate with mmCpG modes to identify genes that may
play a role in methylation levels. The authors identified
3785 and 3847 mmCpGs in pretreatment and posttreat-
ment data sets [20]. Of these, 453 directly overlap with
SNPs. Some show strong correlation between genotype
and methylation levels, which suggests a relation between

Table 2 Chromosome 11 findings from real data analyses

No Approximate position (MBs) Gene(s) Papers Legend
No

Paper

1 0.6 C11orf63 5 1 Daw et al

2 1.9 TNNT3 5 2 Fisher et al

3 5.6 TRIM5,TRIM6-TRIM34,TRIM3 5 3 Hu and Li

4 15.7 rs900865 5 4 Romanescu et al

5 19.4 NAV2 5 5 Sun et al

6 26.5 rs4347345 5 6 Veenstra et al

7 30.4 MPPED2 5 7 Zhou and Lo

8 40.1 LLRC4C 4

9 57.3 SLC43A1 4

10 61.6 FADS1, FADS2, FADS3 6

11 68.6 CPT1Aa 4,7

12 77.1 CUCY2E 5

13 102.8 LOC100128088 5

14 114.1 ZBTB16 5

15 116.7 APOA5, APOA1, BUD13, AP006216.5a 4,6,7

16 133.4 B3GAT1 5
aGenes on chromosome 11 that were identified in more than one paper from the GAW group5
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epigenetics and genetics that may be modeled in the stat-
istical analysis.
Romanescu et al. applied a region-based test to identify

CpG site regions associated with TG levels. They applied
4 statistical models: a single-site test for CpG site associ-
ation and 3 regional tests. In regions defined by GEN-
CODE annotation, they conducted a principal component
analysis for SNP genotypes and for methylation levels.
Then they conducted association tests incorporating (a)
the SNP-principal component, (b) the CpG sites principal
component, and (c) both. The authors used chromosome
11 real data. Their mixed linear models account for family
structure, while incorporating the method proposed by
Gauderman [21] using principal components on SNPs
and CpG site regions [15]. They identified 4 regions on
chromosome 11, including 2 that were identified in other
studies: the CPT1A and the APOA5 regions.
Veenstra et al. employed a candidate gene and a

genome-wide approach to identify genetic and epigen-
etic effects on baseline TG. To remove any confounding
effects, they adjusted for 6 covariates: age, sex, smok-
ing, metabolic syndrome diagnosis (msdx), fasting time
at baseline, and high-density lipoprotein cholesterol.
They used the lmekin function from the coxme R pack-
age [22]. Furthermore, they analyzed the residual TG,
after adjusting for these covariates, by modeling main
effects of SNPs, CpG sites, and their interactions for
approximately 700,000 pairs using an F-test. Addition-
ally, they carried out the same procedure on 18 gene re-
gions containing 423 unique SNP-CpG sites. Their
genome-wide analysis identified no results on chromo-
some 11. In contrast, their candidate gene analysis,
which included 7 genes in 2 regions on chromosome
11, found them as significant in both regions. One of
the regions, APOA5, was also found in other papers of
this group.
Zhou and Lo applied LASSO (least absolute shrinkage

and selection operator)-type regression models to iden-
tify SNP–CpG site interactions [17]. The methods in-
cluded the group LASSO approach for categorical
variables and interactions [23]. These coauthors analyzed
whole-genome CpG site association and whole-genome
SNP association, as well as interaction modeling with
main effects on chromosome 11 only. Zhou and Lo im-
plemented a stability selection method, which quantified
the uncertainty in variable selection, thus controlling the
family-wise error rate. They identified 2 regions on
chromosome 11 that were also identified by other papers
in this group, including CPT1A.

Discussion
The contributing papers in the Gene by Methylation
Interaction group employed 10 major methods to cap-
ture such interaction. Their results suggest that a variety

of methods can be employed to productively analyze com-
bined genetic and epigenetic data. The choice of response
variable was mostly pre(log(TG)); 2 papers looked at
absolute change in log(TG), with 1 paper also examining
post(log(TG)) and 1 dichotomizing percent change in TG.
In addition, 1 study used CpG sites as a response
variable. Papers 4, 6, and 7 all analyzed baseline TG and
obtained a set of overlapping results on chromosome 11
(see Table 1). One of these results was CPT1A, which was
previously reported by the GOLDN study [6]. This overlap
of results lends credence to the accuracy of the results.
Furthermore, the 2 regions of overlap, CPT1A and the
genes in the APOA5 region, are biologically involved in
lipid metabolism. The other papers that analyzed real TG
data (2 and 5; see Table 1), analyzed measures in TG
between pretreatment and posttreatment. This difference
in phenotype may explain why the 2 changes in real TG
papers do not replicate the findings of the TG-baseline pa-
pers. Furthermore, these 2 last papers use different mea-
sures of change in TG, which might explain the lack of
replication between the two. Although we have summa-
rized the reported results in the real data papers, each
paper used slightly different criteria for reporting results.
For evaluating power, the simulated data, in which the

answers are known, are more suited than the real data.
The GAW20 GOLDN real data and GAW20 simulated
data were similar in sample size, less than 900 individ-
uals in baseline and less than 700 individuals in visits 3
and 4, thus making for samples that limit the power of
discovery of causative variants. The Daw et al. paper
shows that in the GAW20 simulated data there was a
reasonable power to detect causative loci, but detection
of background causative rare alleles with very small
contributions is difficult with this sample size. Fisher et
al. report the need for a sample size of approximately
19.5 K to be able to detect significant indirect effects.
Thus, it is reasonable to expect that methods to detect
gene by methylation interaction will yield better results
in many large studies.
The analyses used employed various types of linear

models. The Daw et al., Fisher et al., Sun et al.,
Veenstra et al., and Zhou and Lo papers all include
models with SNP by methylation interaction, while the
paper by Romanescu et al. includes a gene-region
model that comprises effects for the principle compo-
nents of both SNP genotype and methylation within a
single gene-region. These models appear reasonable,
given the current understanding of genetics and epigen-
etics. However, the paper of Hu and Li found some
correlations between measured CpG site levels and
SNP genotypes, which may indicate additional relation-
ships that should be incorporated as our understanding
improves. The methods applied in these papers have
clear utility, but improvements may be possible as new
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relationships between genetic and epigenetic data are
discovered and incorporated into the models.

Conclusions
The SNP–methylation interaction group provides very
creative, interesting approaches for application to the
GAW20 data sets, using either the GOLDN or simulated
data. Several papers found a number of causative SNPs
using the simulation set and the previous results on
chromosome 11 were confirmed. Other papers identified
different SNPs, CpG sites, and SNP–CpG interaction sites.
Power appeared generally good for large interaction ef-
fects for these methods in a sample similar in size to the
one provided (approximately 500 to 1000 individuals), but
smaller effects appear to require larger studies or consor-
tiums to have sufficient power.
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