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Abstract

Background: Identification of interactions between epigenetic factors and treatments might lead to personalized
intervention of diseases. This paper aims to examine the modification effect of fenofibrate therapy on the association of
methylation levels and fasting blood triglycerides (TG), and the related biological pathways among methylation sites.

Results: Mixed-effects models were employed to assess pre- and posttreatment associations and drug modification
effects simultaneously. Five cytosine-phosphate-guanine (CpG) sites were found to be associated with TG levels before
and after the fenofibrate therapy: cg00574958, cg17058475, and cg01082498 on CPT1A gene, chromosome 11;
cg03725309 on SARS, chromosome 1; and cg06500161 on ABCG1, chromosome 21. In addition, fenofibrate therapy
modified the methylation levels on the following 4 CpG sites: cg20015535 (gene EGLN1, chromosome 1); cg24870738
(gene RNF220, chromosome 1); cg06891775 (gene LOC283050, chromosome 10); and cg00607630 (gene USP7,
chromosome 16). Further, gene set enrichment analysis (GSEA) identified cancer- and metabolism-related pathways
that were associated with TG-related CpG sites.

Conclusions: We identified modification effects of fenofibrate on the associations between blood TG levels and several
CpG sites. Pathway enrichment analysis indicated the alternations in some metabolism and cancer-related pathways.
Our findings have important implications for future research in pharmacoepigenetics and personalized medicine.
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Background
Large-scale genome-wide association studies (GWAS)
have identified numerous loci associated with fasting
blood lipids and other cardiovascular diseases (CVDs)
[1]. Epigenetic analysis has gained attention in the past
few years as an alternative perspective on the etiology of
complex diseases. Epigenetic adaptations alter gene ex-
pressions and are heritable through many cell divisions,
even across generations, while they do not alter the pri-
mary DNA sequence. To advance blood lipids and CVD

research, it is important to apply epigenome-wide associ-
ation study (EWAS) to detect the epigenetic risk factors.
The study of molecular mechanisms underlying epigen-
etic inheritance, such as DNA methylation, will provide
insights in advancing and shaping ideas of the role that
epigenetic phenomena play in high blood lipids and
CVD. In this paper, we used data from the Genetics of
Lipid-lowering Drugs and Diet Network (GOLDN) study
provided by the GAW20 to examine the methylation
levels of lipid-lowering treatment on the fasting blood
triglycerides [2].
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Methods
Data
The GAW20 data sets are drawn from the GOLDN study
with a total number of 1105 participants [2]. The data sets
include GWAS and EWAS data before and after the fenofi-
brate (blood lipid-lowering drug) intervention. The EWAS
data set contains 2 triglyceride (TG) measurements and
methylation levels of 463,995 cytosine-phosphate-guanine
(CpG) sites for 995 pretreatment individuals and 530 post-
treatment individuals, respectively. The log-transformed
mean pre- and posttreatment TG levels were used as the
outcome variable in our model. Control variables include
age, gender, study center, and family pedigree.

EWAS model
We applied mixed-effects models for two repeated mea-
sures of log TG levels with fixed effects of time (0 = pre, 1
= post), methylation level, and their interactions, adjusting
for age (18 years of age to approximately 87 years of age),
sex, study site, and top 4 methylation principal compo-
nents. Pedigree and subject IDs are controlled as nested
random effects. These fixed effects of time, methylation
levels, and the interaction term, measure the associations
for both pre- and posttreatment periods, and the treat-
ment modification effects, respectively.
Let Yijk denote the log TG measurements at kth time (0

= pre, 1 = post) for the ith individual in the jth pedigree; Xijk

denote the methylation level; and tk denote treatment while
t0= 0 and t1=1. The model equation can be written as:

Y ijk ¼ β0 þ β1Xijk þ γtk þ δ Xijk tk
� �þ β2Agei þ β3Sitei

þβ4PC1ik þ β5PC2ik þ β6PC3ik þ β7PC4ik
þSij þ εijk

where the main effect β1is the pretreatment methylation ef-
fect on log TG; γ is the main treatment effect; δ is the inter-
action effect between methylation and treatment (i.e., the
treatment modification effect); and Sij is the random effect
of the individual nested within the pedigree. The general
linear hypothesis tests were applied to calculate postmethy-
lation effect (β1 + δ), the standard errors, and the p values.
We examined each CpG site on the whole genome
(463,995 sites). Mixed-effects models for repeated measures
enable us to examine the individual patterns of change by
excluding between-individual variability and provide more
efficient estimators of treatment effects. The main effects
and interactions work together to identify the epigenetic
risk factors of TG levels for pretreatment, posttreatment,
and potential gene–drug interactions simultaneously [3, 4].
Compared to cross-sectional study, the repeated measure
analysis has the advantage of making reliable inferences by
capturing the systemic changes within individuals, thereby
achieving more sensitive tests and higher statistical power
for a fixed number of individuals [5, 6]. Statistical software

R (version 3.2.3) was used for the entire analyses, with R
package nlme for mixed-effects modeling [7], car for linear
hypothesis tests [8], and qqman for Manhattan plots
[9].We applied a relatively loose significance threshold (p
value <1E-5) for modification effects and posttreatment as-
sociations because of the exploratory nature of proposed
method and the moderate sample size (N = 536 posttreat-
ment measures). A less-stringent threshold might imply po-
tential drug modification effects, as empirical evaluation
suggests a possible relaxation in the current GWAS thresh-
old for replication studies [10].

Pathway-enrichment analysis
After EWAS analyses of CpG sites for pretreatment,
posttreatment, and interaction effects, we mapped them
to corresponding genes. To provide a functional insight
of the results, we applied a gene set enrichment analysis
(GSEA) [11] preranked test to each of 3 gene lists with
log-transformed p values. To compute the empirical p
values and false discovery rates (FDRs) for pathways, we
performed 1000 permutations. Pathways from the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database
[12] were used in our analysis.
GSEA is a robust technique that searches for pathways

(gene sets) that contain abundant highly significant genes
(CpG sites) based on a Kolmogorov-Smirnov test [11] to
reveal biological insights of genome/epigenome data.

Results
Table 1 lists selected CpG sites that are associated with pre-
and post-log TGs, and modified by treatment, and Fig. 1
shows the corresponding Manhattan plots. The methyla-
tion level of 3 CpG sites (cg00574958, cg17058475, and
cg01082498) on CPT1A gene, chromosome 11, and 2 other
CpG sites (cg03725309 on gene SARS, chromosome 1, and
cg06500161 on ABCG1, chromosome 21) were found to be
associated with both pre- and posttreatment TG levels
(p values <1E-5). Moreover, the methylation levels of 2
sites on chromosome 11 are associated with pretreat-
ment log TG but not with posttreatment log TG levels
(cg12556569 on gene APOA5 and cg11376147 on gene
SLC43A1).
In addition, the associations between methylation level and

log TG levels were modified by the fenofibrate therapy on
the following four CpG sites with p value < 1E-5:cg20015535
(gene EGLN1, chromosome 1), cg24870738 (gene RNF220,
chromosome 1), cg06891775 (gene LOC283050, chromo-
some 10), and cg00607630 (gene USP7, chromosome 16).
The GSEA results are recorded in Table 2, which

shows FDR q-values for the top 15 pathways across pre- and
posttreatment associations, and the treatment-modifying ef-
fects. Several cancer-related pathways (KEGG_ENDOMET
RIAL_CANCER; KEGG_PATHWAYS_IN_CANCER; KEG
G_CHRONIC_MYELOID_LEUKEMIA; KEGG_BASAL_C
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ELL_CARCINOMA; and KEGG_NON_SMALL_CELL_L
UNG_CANCER) show consistent significant results. In
addition, metabolism related pathways were also observed
(KEGG_TYPE_II_DIABETES_MELLITUS and KEGG_ADI
POCYTOKINE_SIGNALING_PATHWAY).

Discussion
The proposed mixed-effects model examines the methy-
lation sites that are associated with blood TG levels be-
fore and after the fenofibrate therapy, and the potential
gene–drug interactions. Using the linear hypothesis test,

A

C

B

Fig. 1 Manhattan plots of EWAS analyses for (a) pretreatment, (b) posttreatment, (c) and drug–gene interactions (i.e., drug modification effect)

Table 2 FDR q-values for the top 15 pathways across different results from GSEA

Pathway name Pretreatment
FDR q value

Posttreatment
FDR q value

Modification
FDR q value

KEGG_ENDOMETRIAL_CANCER 0.146 0.023 0.040

KEGG_PATHWAYS_IN_CANCER 0.166 0.059 0.137

KEGG_DORSO_VENTRAL_AXIS_FORMATION 0.182 0.067 0.122

KEGG_ADHERENS_JUNCTION 0.141 0.079 0.139

KEGG_TYPE_II_DIABETES_MELLITUS 0.198 0.079 0.092

KEGG_COLORECTAL_CANCER 0.205 0.078 0.107

KEGG_ADIPOCYTOKINE_SIGNALING_PATHWAY 0.160 0.081 0.138

KEGG_FOCAL_ADHESION 0.165 0.061 0.153

KEGG_MELANOGENESIS 0.178 0.077 0.139

KEGG_ALDOSTERONE_REGULATED_SODIUM_REABSORPTION 0.193 0.017 0.156

KEGG_CHRONIC_MYELOID_LEUKEMIA 0.160 0.134 0.133

KEGG_BASAL_CELL_CARCINOMA 0.153 0.055 0.199

KEGG_CALCIUM_SIGNALING_PATHWAY 0.236 0.067 0.133

KEGG_WNT_SIGNALING_PATHWAY 0.230 0.075 0.133

KEGG_NON_SMALL_CELL_LUNG_CANCER 0.289 0.070 0.109
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we identified 7 CpG sites that are associated with pre-
treatment TG levels (p value <1E-7) and 5 sites for post-
treatment (p value <1E-5). All 5 posttreatment CpG sites
are overlapped with pretreatment CpG sites. Among
these CpG sites, 3 are located in gene CPT1A, which en-
codes a key enzyme in the carnitine-dependent transport
of long-chain fatty acids across the mitochondria mem-
brane whose deficiency will result in downregulation of
fatty acid β-oxidation [13].The consistent findings sug-
gest a strong association between blood TGs and DNA
methylation of CPT1A regardless of the interference of
lipid-lowering drug. In addition, we also observed 4 po-
tential drug-interacted CpG sites from our results that
belong to genes EGLN1, LOC283050, USP7, and
RNF220. Previous study shows that the inhibition of
EGLN1 improves the glucose and lipid metabolism, and
protects against obesity and metabolic dysfunction [14].
Less-significant results were observed for drug modifica-
tion effects, which were in part a result of the moderate
sample size (536 posttreatment measures). But our re-
sults provide initial evidence of gene–drug interaction
and warrant replication studies [10].
To provide further biological insight to 4 EWAS results,

GSEA was applied to examine the associated biological
pathways using KEGG database [12]. It is worth noting
that 5 cancer-related pathways were enriched by
TG-associated CpG sites. We observed potential associa-
tions between blood TG levels and cancer risk from an
epigenetic point of view. Although obesity was recognized
as a risk factor for several different cancers, for example,
endometrial cancer [15], further mechanism research is
necessary to determine whether there is any association
between methylation level and cancer risk. In addition to
these cancer-related pathways, 2 metabolism-related path-
ways were also observed. For Type II diabetes, elevated
TG levels are common dyslipidemic features [16] and
could be identified as an independent risk factor [17]. An-
other significant pathway is the KEGG_ADIPOCYTOKI-
NE_SIGNALING_PATHWAY. In addition to the fatty
acid metabolism and β-oxidation, this pathway is also as-
sociated with glucose uptake and insulin resistance.

Conclusions
In summary, we used linear mixed models with interaction
terms to study pre- and posttreatment associations between
blood TGs and CpG methylation levels and drug–gene in-
teractions simultaneously across the whole-genome. We
found several CpG sites that were consistently associated
with blood TG levels in both pre- and posttreatment. In
addition, by testing on the interaction term, we found po-
tential treatment modification effects on certain CpG sites.
Our pathway-enrichment analysis revealed a number of
cancer-related biological pathways that were significantly
enriched by TG-associated CpG sties. The results suggest

connections between TG levels and cancer risk through an
epigenetic point of view. However, because only 1 cohort
with a limited sample size was studied in our analyses, fur-
ther research on independent cohorts and experimental
biology validations are needed for convincing conclusions.
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