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Abstract

Background: Random forest (RF) is a machine-learning method that generally works well with high-dimensional
problems and allows for nonlinear relationships between predictors; however, the presence of correlated predictors
has been shown to impact its ability to identify strong predictors. The Random Forest-Recursive Feature Elimination
algorithm (RF-RFE) mitigates this problem in smaller data sets, but this approach has not been tested in high-
dimensional omics data sets.

Results: We integrated 202,919 genotypes and 153,422 methylation sites in 680 individuals, and compared the
abilities of RF and RF-RFE to detect simulated causal associations, which included simulated genotype–methylation
interactions, between these variables and triglyceride levels. Results show that RF was able to identify strong causal
variables with a few highly correlated variables, but it did not detect other causal variables.

Conclusions: Although RF-RFE decreased the importance of correlated variables, in the presence of many
correlated variables, it also decreased the importance of causal variables, making both hard to detect. These
findings suggest that RF-RFE may not scale to high-dimensional data.

Keywords: Genomics, Genetics, Epigenomics, Methylation, Machine-learning, Omics, Integration, High-
dimensional data, Random forest, Recursive feature elimination, Correlation

Background
Although recent improvements in high-throughput tech-
nology enable the collection of large omics data sets for
many biological fields, analysis methods to handle these
data are still in their infancy. The variety of currently avail-
able omics data types provides the opportunity to move to-
ward a systems biology approach, which is essential to
understand the genomic complexities of non-Mendelian
traits. The alleged “missing heritability” of complex traits is
likely, in part, the result of most studies focusing on linear
models within single data types, thereby limiting findings to
variants that are independently correlated with disease [1].
However, genetic variants likely interact with each other

and other biologic processes in complex nonlinear ways to
influence disease. Integrating multiple omics data types is
thought to be a powerful approach, allowing for more thor-
ough and comprehensive modeling of complex traits [2, 3].
Only recently have researchers begun tackling the complex-
ities and analytic challenges that omics integration poses
and thus, gold standards do not yet exist.
Random forest (RF) is a machine-learning method that

may be a good candidate for integrating omics data as it
generally works well with high-dimensional problems and
can identify strong predictors of a specified outcome with-
out making assumptions about an underlying model [4].
However, a common problem of high-dimensional data sets
is the presence of correlated predictors, which impact RF’s
ability to identify the strongest predictors by decreasing the
estimated importance scores of correlated variables [5]. A
suggested solution is the Random-Forest-Recursive Feature
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Elimination (RF-RFE) algorithm [5]. RFE was initially pro-
posed to enable support vector machines to perform feature
selection by iteratively training a model, ranking features,
and then removing the lowest ranking features [6]. This
method has been similarly applied to RF [7, 8] and found to
be beneficial in the presence of correlated features [5].
In this study, we assessed how well RF-RFE mitigates

the effects of correlated variables in high-dimensional in-
tegrated omics data by comparing the ability of RF-RFE
to RF without RFE to detect simulated associations, in-
cluding interactions, in the presence of correlated vari-
ables. Data were based on the Genetics of Lipid
Lowering Drugs and Diet Network study [9] and in-
cluded genomic, epigenomic, and triglyceride (TG) data
provided for GAW20. Analyses were conducted with
knowledge of the simulated model.

Methods
Data set
The data set provided by GAW20 organizers included
a simulated pharmacoepigenetic effect of a fictitious
drug on TG response, where major effects include in-
teractions that depend on an individual’s genotype
and corresponding methylation state. Specifically,
there are five simulated causal single nucleotide poly-
morphisms (SNPs) that express their influence on TG
response to treatment when their five corresponding
nearby cytosine-phosphate-guanine (CpG) sites are
sufficiently unmethylated posttreatment. This analysis
used genome-wide genotypes, simulated posttreatment
genome-wide methylation, and TGs measured on two
consecutive days pretreatment and simulated on two
consecutive days posttreatment, for a total of four TG
measures.
Consistent with the simulation model, we calculated

TG response by subtracting the average log pretreatment
from the average log posttreatment TG measures and
then adjusted this difference by baseline TG levels using
linear regression. The resulting residuals were used as
the outcome; SNPs and posttreatment CpG sites were
predictors in RF.
A total of 680 participants had all three data types and

were included in the analyses. Because of the computa-
tional demands of the analyses, we focused on chromo-
somes 1, 6, 8, 10, and 17 (202,919 SNPs and 153,422
simulated posttreatment CpGs, for a total of 356,341
variables), which contained the five causal SNPs and
their corresponding methylation sites. Furthermore, we
used the 84th simulation replicate, which was suggested
by the GAW20 organizers to be most representative of
the 200 simulations provided. Correlation between pre-
dictors was calculated using Pearson r2. Regional associ-
ation plots displaying results from both RF and RF-RFE
were created using LocusZoom v1.3 [10].

Random forest
RF is a machine-learning algorithm that ranks the import-
ance of each predictor included in a model by construct-
ing a multitude of decision trees [4]. Each node of a tree
considers a different subset of randomly selected predic-
tors, of which the best predictor is selected and split on.
The criterion used to determine the best predictor was de-
creased in node impurity, measured with the estimated re-
sponse variance, which is the default method used for
regression trees in the ranger implementation of RF that
was used in this study [11]. Each tree is built using a dif-
ferent random bootstrap sample, which consists of ap-
proximately two-thirds of the total observations and is
used as a training set to predict the data in the remaining
out-of-bag (OOB) sample, or testing set. Predictions for
each variable are aggregated across all trees and the mean
square error (MSE) of the OOB estimates is calculated.
The MSEOOB and percentage of variance explained are
used to evaluate the performance of each RF.

Recursive feature elimination
To assess whether RF-RFE improved upon RF alone, we
assessed the importance scores attained after running RF
once and after running it recursively, using the initial RF as
the first of the recursive runs in the RF-RFE approach. The
RF-RFE approach consisted of (a) running RF to determine
initial importance scores, (b) removing the bottom 3% of
variables with the lowest importance scores from the data
set (3% was chosen because of the high computational de-
mands of using a lower threshold; this resulted in a total of
324 RF runs), and (c) assigning ranks to removed variables
according to the order in which they were removed and
their most recent importance scores (ie, importance scores
are only compared within runs, not between runs). This
was performed iteratively using the reduced data set created
in step two until 3% of the number of remaining variables
rounds to zero (ie, no further variables could be removed).

Parameter tuning and model runtimes
In RF, the number of predictors sampled for splitting at
each node, mtry, and the number of trees in the forest are
the two primary tuning parameters [12]. For this analysis,
8000 trees were used. When the majority of features are
noise or a very large number of features are being used, an
mtry of 0.1*p, where p is the number of predictors in the
model, has been suggested to be a more appropriate choice
than the default mtry =

ffiffiffi

p
p

[13, 14]. Thus, when p > 80 and
likely still contained many noisy variables, we used an mtry
of 0.1*p, and after features were recursively removed from
the model and p ≤ 80, we used the default mtry. These pa-
rameters produced reasonably low MSEOOBs when com-
pared to others. Permutation variable importance mode
was used.
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The initial RF took approximately 6 h and the RF-RFE
took approximately 148 h to run on a Linux server with
16 cores and 320GB of RAM.

Results
None of the causal CpG sites were highly correlated with
any other variable (all r2 < 0.04), and causal SNPs were
only highly correlated with other SNPs, indicating that
linkage disequilibrium was likely the strongest contribu-
tor to correlation in this data set. Table 1 provides sum-
mary statistics for the causal SNPs and CpGs, including
minor allele frequencies (MAFs) for SNPs and means for
CpGs, simulated effects based on the full 200 simulated
replicates, and effects tested with linear regression
models using the 84th simulated replicate used for this
study. These models confirm that the causal SNPs have
main effects, but causal CpGs only have effects through
interactions with their corresponding SNPs.
Table 1 provides RF and RF-RFE rankings based on

importance scores for the five simulated causal SNPs
and CpGs. Figure 1 visually shows the rankings of
causal SNPs and their correlated SNPs with an r2 >
0.10. It was not uncommon for correlated SNPs to be
ranked similarly to causal SNPs by RF and this simi-
larity was not always influenced by the strength of
correlation (Fig. 1c, e and g).
RF was generally able to identify causal SNPs fairly well.

Despite being simulated to have the second highest effect
size, rs1012116 in chromosome 8 was the lowest ranking

simulated SNP in RF, but was still in the 85.9 percentile
(see Table 1). Of interest, this SNP had the greatest num-
ber of highly correlated SNPs when compared to the four
other causal SNPs (see Fig. 1e). The causal SNP with the
largest effect size and the fewest correlated SNPs,
rs9661059 in chromosome 1, was impressively ranked as
the single top predictor in RF of the total 356,341 variables
included (see Table 1 and Fig. 1a), while a highly corre-
lated SNP (rs9725734, r2 = 0.84) was ranked third (orange
marker in Fig. 1a). RF was able to identify causal CpG sites
cg00000363 and cg10480950 (each ranked >97th percent-
ile), both of which were in chromosomes that did not have
many highly correlated SNPs (chromosomes 1 and 6, re-
spectively) (Table 1 shows rankings and Fig. 1a and c show
SNP correlations). When tested in linear regression
models, these two CpG sites also had the smallest p values
compared to the remaining causal CpGs, which RF ranked
very poorly (see Table 1).
Figure 1 shows that rankings of the correlated SNPs not-

ably decreased in RF-RFE when compared to RF. The top
ranking SNP in RF (causal rs9661059 in chromosome 1)
ranked slightly lower in RF-RFE (rank = 20) (see Table 1 and
Fig. 1a and b), as did the SNP it was highly correlated with
(rs9725734, rank = 52) (orange marker in Fig. 1a and b).
The causal SNP in chromosome 6, rs736004, ranked higher
in RF-RFE than in RF (99.8 percentile) (see Table 1 and Fig.
1c and d). Neither of these SNPs had many highly corre-
lated variables. However, in the presence of many highly
correlated variables, rankings of the causal SNPs greatly de-
creased in RF-RFE when compared to RF alone. This was

Table 1 Summary statistics and variable importance rankings of simulated causal effects on TG

RF* RF-RFE

r2 −0.00203 0.19217a

MSEOOB 0.07378 0.05948a

Chr Causal SNP/CpG MAF or Mean (SD) Simulated h2† Main Effects,
β(SE), p value

Interaction Effects,
β(SE), p value

Rank (percentile rank)

1 rs9661059 0.12 0.125 .14 (0.02), <0.0001 −0.19 (0.07), 0.0109 1 (100.0) 20 (100.0)

cg00000363 0.49 (0.33) – −0.05 (0.03), 0.0873 8680 (97.6) 239,755 (32.7)

6 rs736004 0.09 0.075 0.09 (0.03), 0.0005 −0.30 (0.08), 0.0001 13,480 (96.2) 766 (99.8)

cg10480950 0.54 (0.33) – −0.04 (0.03), 0.1711 5332 (98.5) 232,579 (34.7)

8 rs1012116 0.20 0.100 0.08 (0.02), <0.0001 −0.21 (0.06), 0.0002 50,218 (85.9) 333,504 (6.4)

cg18772399 0.56 (0.33) – −0.002 (0.03), 0.9466 339,475 (4.7) 301,855 (15.3)

10 rs10828412 0.14 0.025 0.07 (0.02), 0.0007 −0.07 (0.07), 0.2770 2984 (99.2) 330,516 (7.3)

cg00045910 0.49 (0.34) – 0.01 (0.03), 0.7176 263,465 (26.1) 231,315 (35.1)

17 rs4399565 0.41 0.050 0.04 (0.02), 0.0142 −0.13 (0.05), 0.0038 11,078 (96.9) 196,276 (44.9)

cg01242676 0.46 (0.32) – 0.01 (0.03), 0.8159 350,420 (1.9) 350,420 (1.7)

Bolded values are significant at a p<0.05
*RF is the first RF in RF-RFE
ar2 and MSEOOB are averaged over all 324 RFs in the RF-RFE column
†Simulated h2 was provided by GAW20 organizers and based on full 200 simulations; main and interaction effects are calculated within the data set used for this
study, which uses the 84th simulation replicate. Effects are calculated with linear regression models using the residual of change in TG after adjusting for baseline
TG as the outcome. Interaction effects include the main effects of the interaction terms being tested in the given model
Abbreviations: β Effect size, Chr Chromosome, h2 Heritability
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Fig. 1 (See legend on next page.)
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true in chromosomes 8 and 10, where both causal SNPs
were ranked in the 10th percentile by RF-RFE (see Table 1
and Fig. 1e, f, g and h). Both of these causal SNPs had many
highly correlated variables. The causal SNP in chromosome
17, rs4399565, was not correlated with many other SNPs,
but a few of these were moderately correlated with
rs4399565 (see Fig. 1i). This SNP had a much lower ranking
in RF-RFE (44.9 percentile) (see Table 1 and Fig. 1j), but not
quite as low as those in chromosomes 8 and 10. All CpG
sites ranked very poorly in RF-RFE, with the highest per-
centile rank being 35.1 (see Table 1).
Background SNPs simulated by the GAW20 organizers

to have small effect sizes on TG (all heritabilities =
0.001) were generally not ranked highly by RF and did
not change rankings greatly with RF-RFE (data not
shown). Of the 25 background SNPs present in our data,
RF ranked 19 and RF-RFE ranked 16 of them below the
70th percentile.
As a consequence of the random nature of RF, RF and

RF-RFE were run a second time and results were gener-
ally consistent, particularly the strongest findings.

Discussion
In this study, we used simulated data to assess the ability
of RF-RFE to ameliorate the effects that correlated
variables have on RF importance scores using
high-dimensional integrated omics data. Comparing im-
portance score rankings from RF and RF-RFE, we found
that RF-RFE ranked SNPs that were correlated with
causal SNPs lower than RF ranked them, as anticipated.
Causal SNPs with fairly simple correlation structures
that were not highly correlated with many other SNPs
(ie, those within chromosomes 1 and 6) received similar
or higher importance score rankings in RF-RFE than in
RF, making them easier to distinguish from the corre-
lated noncausal SNPs. However, when many SNPs were
highly correlated with the causal SNP, RF-RFE ranked
causal SNPs very poorly. Thus, RF-RFE may not be an
effective method to use in data sets that contain many
highly correlated variables. However, analyses with a lar-
ger number of simulated variables with strong effects
would be more conclusive regarding the influence of
correlation on RF-RFE with omics data.
RF identified causal variables more strongly when they

had fewer correlated variables, further supporting the
reported influence of correlated variables on importance

scores [15]. Even with this limitation, RF ranked most of
the simulated causal variables highly, confirming that it is a
strong approach for variable selection in high-dimensional
data. It may not be a strong approach for detecting subtle
effects though, as was indicated by its inability to detect
simulated background SNPs with small effect sizes.
Although RF-RFE may not ameliorate the effects of

correlated variables in the presence of many highly cor-
related variables, it could be an effective method for
nongenetic omics data sets. Because of linkage disequi-
librium, genomic data typically include many highly cor-
related variants, but this correlation structure is unlikely
to be present in other omics data types. While our ana-
lyses did include epigenomic data, CpGs were not simu-
lated to have main effects, as they only had interaction
effects through corresponding SNPs. Interactions are
particularly difficult to assess in RF when the interacting
features lack main effects as they are unlikely to be se-
lected and split on at all [16], which suggests that they
are unlikely to rank highly in RF, and could explain why
RF-RFE did not improve their rankings. Thus, we were
unable to explicitly assess the performance of RF-RFE
with this nongenetics omics data set.
Despite RF being well suited to handle nonlinear ef-

fects, without performing additional analyses, import-
ance scores alone do not provide information about
which variables may be interacting. Millions of pairwise
possibilities would have to be further tested based on
the current results to identify the simulated interaction
between the two causal CpG sites in chromosomes 1
and 6 that ranked well in RF and their corresponding
SNPs. Even then, power issues would likely make these
interactions impossible to detect using traditional
methods. The other three causal CpG sites ranked very
poorly in RF and did not suggest interactions. However,
this was not unexpected as permutation importance
scores were not designed to detect interactions [16] and
reportedly fail to do so in high-dimensional data with
weak marginal effects [17]. Although it has been shown
that RF is influenced by interactions, it is very difficult
to specifically identify which variables are interacting
with current variable importance methods [16].

Conclusions
To conclude, RF-RFE may not be an appropriate
method when many highly correlated features are

(See figure on previous page.)
Fig. 1 Regional association plots showing RF and RF-RFE importance rankings of causal and correlated SNPs (r2 > 0.10). The causal SNP in
each plot is shown by the purple diamond, with the reference SNP number indicated above. A higher value on the y-axis indicates a
higher importance score and better rank. a. RF importance rankings for chromosome 1. b. RF-RFE importance rankings for chromosome 1.
c. RF importance rankings for chromosome 6. d. RF-RFE importance rankings for chromosome 6. e. RF importance rankings for chromosome
8. f. RF-RFE importance rankings for chromosome 8. g. RF importance rankings for chromosome 10. h. RF-RFE importance rankings for chromosome
10. i. RF importance rankings for chromosome 17. i. RF-RFE importance rankings for chromosome 17
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present in high-dimensional omics data. Further re-
search is needed to assess its effectiveness in nonge-
netic omics data. Although correlated variables impact
the performance of RF, RF detected simulated associa-
tions more strongly than RF-RFE and is a robust
method for high-dimensional data.
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