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Abstract
Background: The genetic association analysis using haplotypes as basic genetic units is anticipated
to be a powerful strategy towards the discovery of genes predisposing human complex diseases. In
particular, the increasing availability of high-resolution genetic markers such as the single-nucleotide
polymorphisms (SNPs) has made haplotype-based association analysis an attractive alternative to
single marker analysis.

Results: We consider haplotype association analysis under the population-based case-control
study design. A multinomial logistic model is proposed for haplotype analysis with unphased
genotype data, which can be decomposed into a prospective logistic model for disease risk as well
as a model for the haplotype-pair distribution in the control population. Environmental factors can
be readily incorporated and hence the haplotype-environment interaction can be assessed in the
proposed model. The maximum likelihood estimation with unphased genotype data can be
conveniently implemented in the proposed model by applying the EM algorithm to a prospective
multinomial logistic regression model and ignoring the case-control design. We apply the proposed
method to the hypertriglyceridemia study and identifies 3 haplotypes in the apolipoprotein A5 gene
that are associated with increased risk for hypertriglyceridemia. A haplotype-age interaction effect
is also identified. Simulation studies show that the proposed estimator has satisfactory finite-sample
performances.

Conclusion: Our results suggest that the proposed method can serve as a useful alternative to
existing methods and a reliable tool for the case-control haplotype-based association analysis.

Background
Genetic association analysis aims to detect gene-disease
association through linkage-disequilibrium of a disease
susceptibility gene with adjacent genetic markers. Histori-
cally, association analysis was limited to single markers. It
is anticipated that greater power may be gained by utiliz-
ing linkage-disequilibrium information from multiple
markers simultaneously. This anticipation, together with

recent advances of the availability of high-resolution
genetic markers, in particular the single-nucleotide poly-
morphisms (SNPs), has motivated the use of haplotypes,
which are specific combinations of closely linked genetic
markers on a chromosome, as the basic genetic units for
association analysis. In addition, the biological advantage
for haplotype-based analysis is that it can directly identify
unique chromosomal segments that contain disease sus-
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ceptibility genes by assessing the haplotype-specific risk
for disease. Schaid [1] provided a detailed and excellent
review for haplotype-based association analysis.

The population-based case-control study design has been
popular for genetic association analysis due to its cost-effi-
ciency in collecting the data. If the haplotype pair for each
individual is directly observable, traditional logistic
regression analysis can be applied to assess the haplotype-
disease association, possibly adjusting for environmental/
demographical factors, and to evaluate the haplotype-
environment interactions. According to Prentice and Pyke
[2], with case-control data, maximum likelihood estima-
tion of the association (odds-ratio) parameters in logistic
regression model can be simply carried out by fitting a
prospective logistic model and ignoring the case-control
design. Note that, in traditional logistic regression analy-
sis, no modeling assumptions are made on the distribu-
tion of the covariates (haplotype and/or environmental
factors), that is, the covariate distribution is treated fully
nonparametrically.

Usually, the haplotype information is not directly
observed and is subject to ambiguity because we can only
observe the "unphased" genotype data where the "phase
information", i.e., the arrangement of alleles on each of
the two chromosomes, is unavailable. There has been rich
literature of haplotype inference in general populations,
see for example the EM algorithms by Excoffier and Slat-
kin [3] and Li et al. [4], and the Bayesian methods in
Stephens et al. [5] and Niu et al. [6]. To recover the phase
information and to ensure the identifiability of the associ-
ation parameters, in general we need to impose some
modeling assumptions on the distribution of haplotype
pairs; see Epstein and Satten [7] for related issues when no
environmental covariates are considered. One common
assumption for such a model is Hardy-Weinberg equilib-
rium (HWE) in the general population. When environ-
mental covariates are considered, further assumptions
regarding relationship between haplotype pairs and envi-
ronmental factors may be required. One convenient and
generally reasonable assumption for this is the haplotype-
environment independence [8,9], which assumes that a
subject's haplotype-pair features are independent of his/
her environmental exposures.

In this work, to assess the haplotype-environment associ-
ations with disease phenotype, we will first propose a
novel modeling setup that is based on a multinomial
logistic regression model, where the various combina-
tions of disease and haplotype-pair categories are treated
as multinomial outcomes, and the environmental/demo-
graphical factors are used as covariates. We show that the
proposed multinomial logistic model can be decomposed
into a prospective logistic disease model relating the hap-

lotype and environmental factors with disease, as well as
a parametric model for the haplotype-pair distribution,
conditional on the environmental covariates, among the
control population. Compared to some existing methods
such as the one proposed by Spinka et al. [9], our proposal
differs from theirs in the way to model the haplotype-pair
distribution: In our proposal the model for the haplotype-
pair distribution is specified only for the control popula-
tion, while in the method of Spinka et al. such a model is
specified for the whole population. Epstein and Satten [7]
uses the same modeling strategy as ours, but their pro-
posal cannot allow for environmental covariates. Our pro-
posal is equivalent to the method of Epstein and Satten in
the absence of environmental covariates and extends their
method to incorporate environmental covariates.

The major advantage of the proposed approach lies in its
computational convenience; it can be simply imple-
mented by an iterative reweighted fit of a multinomial
logistic regression model. Note that, when the model for
the haplotype-pair distribution is specified for the whole
population as in the method of Spinka et al. [9], the true
intercept parameter in the prospective disease model,
which quantifies the baseline population disease risk,
appears as a separate parameter and needs to be esti-
mated. Since usually there is little information on this
parameter in a case-control sample, Spinka et al. [9] sug-
gested using external information on the population dis-
ease prevalence or the rare-disease approximation to
avoid estimating the true intercept parameter. In contrast,
in our proposal the true intercept parameter does not
appear as a separate parameter and hence needs not be
estimated even when the disease is common and the pop-
ulation disease prevalence is unknown. Hence the pro-
posed method has wide applicability. Simulation results
reveal that the finite sample properties of the proposed
estimates are satisfactory.

Methods
Model
Let D denote the disease phenotype with D = 1 indicating
disease and D = 0 indicating no disease, G the unphased
multilocus genotype for a series tightly linked SNPs, and
X the demographical/environmental covariates. Suppose
that there are J possible haplotypes denoted by {0,..., J-1}
with 0 indicating the "reference" haplotype (usually the
most frequent haplotype). Let (H1, H2) be the haplotype
pair (diplotype) for a subject and label all possible haplo-
type pairs by H = 0, 1, ..., M - 1 so that "0" represents the
reference haplotype pair (0, 0) and M is the number of all
possible haplotype pairs in the sample.

The multinomial logistic model is a useful tool for regres-
sion analysis with multinomial responses [10,11]. Con-
sidering the various combinations of (D, H) as
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multinomial responses, we propose to base the haplotype
association analysis on the following multinomial logistic
model:

with β0 = β0X = 0 and m(0, X; γ) = 0 for all X, where m(H,
X; γ) is a known but arbitrary function of (H, X). Through-
out the paper, a prime denotes matrix transposition.

To see the meanings of the parameters involved, rewrite
(1)-(3) as

β0 = β0X = 0 and m(0, X; γ) = 0 for all X. We can see that the
parameters α and βX quantify respectively the baseline dis-
ease risk and the effect of environmental exposures on the
disease risk for subjects with the reference haplotype pair.
The function m(H, X; γ) specifies the distribution of the
haplotype pairs among the control population given the
covariates X. The parameters βh and βhX (h = 1,..., M - 1)
measure, in the retrospective odds-ratio scale, respectively
the main effect of the haplotype pair h (relative to the ref-
erence pair) and the interaction between the haplotype
pair h and the covariates X. Note that although βh and βhX
are specified through the retrospective model Pr(H|X, D),
they are equivalent to the corresponding parameters spec-
ified in the prospective disease model Pr(D|X, H). In fact,
according to (1)-(3), the joint probability of (D, H) given
X is obtained as

where

Λih (X; θ) = i (α + βh + X' βX + X' βhX) + m(h, X; γ),

θ = (α, βX, βh, βhX, γ; h = 0,..., M - 1) with β0 = β0X = 0 and
m(0, X; γ) = 0 for all X. The prospective disease model
Pr(D|H, X) is then given by

Therefore, all the association (odds ratio) parameters
regarding the associations between haplotype-environ-
ment factors and disease phenotype in the proposed
model are equivalent to those specified in a prospective
disease risk model. Note that the models (4)–(6) are
equivalent to the prospective disease risk model (8)
together with the model (5) for the haplotype-pair distri-
bution in the controls.

The proposed modeling setup can allow flexible modeling

of the effects of haplotype pairs. Take βh = βhap where

Zh is a vector of coded values for the haplotype pair h

according to a certain genetic law, and βhap is the vector of

associated regression coefficients quantifying the mar-
ginal haplotype effects relative to the reference haplotype.
For example, to evaluate the effect of a specific haplotype

*, we can set Zh = I (h1 =  *) I (h2 = *) for a recessive genetic

law, Zh = I (h1 = *)+ I (h2 = *) - I (hl = *) I (h2 = *) for a dom-

inant law, and Zh = I (hl = *) + I (h2 = *) for a multiplicative

law, where I (A) is the indicator function which equals
one if the event A occurs and equals zero otherwise. More
examples for the specification of the genetic effects can be
found in Epstein and Satten [7] and Zhao et al. [12]. Sim-

ilarly, by taking  = X* βint we can evaluate the inter-

actions βint between haplotypes and a chosen

environmental covariate X*. Although the above examples

focus on effects associated with one single haplotype,
using a collection of Zh variables for multiple causal hap-

lotypes we can fit extensive models with multiple causal
haplotypes; see Results, Application to the hypertriglycer-
idemia study for an illustration.

Various models for the haplotype-pair distribution in the
control population can also be incorporated into the pro-
posed model with suitable specifications of the function
m(H, X; γ). Note that a saturated model for the haplotype-
pair distribution is not identifiable from the unphased
genotype data [7], so certain modeling constraints must
be imposed to ensure identifiability. One convenient
specification is to assume that, in the control population,
the haplotype-pair distribution is independent of the cov-
ariates X and satisfies the Hardy Weinberg equilibrium
(HWE), namely.
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Pr(H1 = hj, H2 = k|X, D = 0) = Pr(H1 = hj, H2 = k|D = 0) =
πjπk, j, k = 0, ..., J - 1,

where πj is the marginal frequency of haplotype j in the

control population. Such a distribution corresponds to

the specification m(H, X; γ) = γ, where WH is a J-vector

with the jth component given by I (H1= j) + I (H2 = j), and

the jth component of γ is related to π by γj = log (πj/π0), j

= 0,..., J - 1. A more general assumption is to allow the
HWE holds only within each of the strata defined by some
categorical covariate S, and the corresponding specifica-

tion of m(H, X; γ) can be expressed as m(H, X; γ) = m(H, S;

γ) = γS, where WH is denned as above and γS is a stra-

tum-specific parameter with the strata determined by S.
For example, when population stratification exists, then
the strata S can be defined by the subpopulations or eth-
nicity groups to account for the violation of HWE caused
by population stratification. Another way to relax the
HWE assumption is to introduce the fixation parameter
[13] into the model m(H, X) for Pr(H|X, D = 0); see Satten
and Epstein [14] for details.

Maximum likelihood estimation
Let N1 and N0 be respectively the number of cases and con-
trols in the sample, and N = N1 + N0 the total sample size.
For the uth subject in the case-control sample, u = 1,..., N,
suppose that the observed data are (Du, Gu, Xu), including
the disease status Du, the unphased genotype Gu, and the
environmental covariates Xu. The haplotype data Hu can-
not be uniquely determined from the unphased genotype
data Gu if the uth subject is heterozygous at more than one
SNP.

Let S(G) be the set of labels of haplotype pairs that are
consistent with unphased genotype G. Using (7), the
probability of (D, G) given X can be expressed as

In the following discussions we will assume that models
for βH, βHX and m(H, X; γ) are specified in such a way that
all the parameters involved are identifiable from prospec-
tive studies. In Appendix 1 we provide identifiability con-
ditions of βH and βHX for a given model m(H, X; γ).

The loglikelihood for the observed data 

in a case-control sample is given by

where Pr(D, H|X; θ) is given by (7), p(X) denotes the mar-
ginal density function of X, and

 We leave

p(X) fully unspecified. Using the profile likelihood
approach to profile out the nuisance parameter p(X), the
retrospective loglikelihood (10) can be translated into a
prospective loglikelihood.

The profile likelihood
Let α* = α + log(ν1/ν0) with νi = Ni/{NPr(D = i)}, i = 0,1.
Define θ* as θ with α replaced by α*. Under the multino-
mial logistic model Pr(D, H|X; θ) given in (7), the retro-
spective loglikelihood for the unphased genotype data in
a case-control sample can be shown to be equivalent to
the prospective loglikelihood

where Pr*(D, H|X; θ*) is defined as Pr(D, H|X; θ) with α
replaced by α*. The derivation is relegated to Appendix 2.

This result is parallel to the classic one given by Prentice
and Pyke [2] when haplotype data are directly observed.
Note that in the prospective likelihood LP the original
intercept α is absorbed into α* and does not appear as a
separate parameter. Hence α is not identifiable and esti-
mable, unless supplementary information on the popula-
tion disease prevalence Pr(D = 1) is utilized to separate α
from α*. Further, following the derivation in Prentice and
Pyke [2] or Scott and Wild [15], we can show that the esti-
mated covariance matrix for all the parameters except α*

can be obtained from the corresponding submatrix of the
observed information matrix based on LP. Therefore,
under the proposed modeling setup the maximum likeli-
hood inference on all the parameters except α can be
based on the prospective loglikelihood LP, with the case-
control sampling design being ignored. Another conse-
quence is that, using the result of Scott and Wild [15],
using external information on Pr(D = 1) in our proposal
only affects the inference of the intercept parameter and
does not affect the efficiency of estimates for all the other
parameters.
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EM algorithm
The maximum likelihood estimation based on LP can be
simply implemented by the EM algorithm. Write ∂LP/∂θ*

= ∑u Ψu (θ*), and let

which is the uth subject's "complete-data" score function
based on Pr*(D, H|X; θ*); see Appendix 3 for its explicit
expression. It can be seen that

where the expectation in the last equation is with respect
to the conditional probability Pr*(Hu = h|Du, Gu, Xu; θ*) ≡
ρhu(θ*) that is defined as

Note that with the proposed model Pr(H = h|D, G, X; θ)
does not depend on α, hence can be readily evaluated
even if α cannot be reliably estimated, which is usually the
case in case-control studies. This property is not shared by
other modeling strategies such as those in Spinka et al. [9]
and Zhao [12], unless the rare-disease assumption is
made.

Equation (11) suggests that the maximum likelihood esti-

mate of θ* can be obtained by the following EM algo-

rithm. Given the estimate of θ* from the rth iteration,

denoted by *(r), we first evaluate the posterior haplo-

type-pair distribution ρhu(θ*) at θ* = *(r). Then we obtain

the updated estimate *(r+1) by solving θ* from

where ρhu = ρhu (θ*(r)). The process is repeated until some
convergence criterion is met. Thus, with the proposed EM
algorithm, maximum likelihood estimation with
unphased genotype data under the proposed model can
be readily implemented by iteratively fitting a weighted

multinomial logistic regression model, with the iterative-
updated weights ρhu(θ*) given by (12). It can be seen that
the EM algorithm above can accommodate not only the
unphased genotype but also the missing genotype data.

When solving (13), we apply the Newton-Raphson algo-

rithm with the negative derivative of ∑u ∑h ρhu (θ*)

with respective to θ* approximated by the simple positive-
definite matrix

where V*(·|X) denotes the variance with respect to Pr*(D,

H|X; θ*); see Appendix 3 for the derivation. Note that C

is also an approximation for the "complete-data" infor-

mation matrix based on Pr*(D, H|X; θ*).

Let * be the final estimate given by the EM algorithm,

provided convergence is achieved. Then * is the maxi-

mum likelihood estimate of θ*, which is asymptotically
normal. The covariance matrix for the maximum likeli-
hood estimates of all the parameters, except the intercept

parameter α*, can be estimated by the corresponding sub-
matrix of the inverse of the observed information matrix
based on LP. Following Louis [16], the observed informa-

tion matrix based on LP can be obtained by

evaluated at θ* = *.

The EM algorithm described above is found to be sensitive
to the initial estimate of γ, the parameter associated with
the haplotype-pair distribution in the control population,
in that the algorithm may fail to converge when using
inappropriate initial estimates of γ. To obtain an adequate
initial estimate of γ, we can adopt an approach similar to
the proposal in Zhao et al. [12] to obtain the initial esti-
mate for γ based on the control data only. For example,
when the haplotype distribution in the controls follows
HWE and is independent of environmental covariates, we
can obtain initial estimate for γ, or equivalently the hap-
lotype frequencies π in the controls, by solving πj, j = 0,...,
J - 1 from

where
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and π(-1) denotes the solution of π in the previous itera-
tion. Our numerical experiments reveal that, starting with
assigning equal frequency to each haplotype, two itera-
tions in (14) are sufficient to yield an adequate initial esti-
mate of γ.

To ensure stable estimation during the EM algorithm, for
a haplotype with very small estimated frequency (e.g. <e-

10), we will fix its frequency to be 0 and drop the corre-
sponding parameter from γ.

We have developed a general-purposed SAS Macro for
implementing the proposed method, which is available
upon request from the corresponding author.

Results
Application to the hypertriglyceridemia study
The proposed methodology is applied to the hypertriglyc-
eridemia study conducted at National Taiwan University
Hospital (Kao el al. [17], Tzeng et al. [18]), where 303
healthy controls and 290 cases, defined as serum triglycer-
ide level > 400 mg/dl, were recruited. One primary objec-
tive of this study is to assess the association between the
haplotypes in apolipoprotein A5 gene (APOA5) and
hypertriglyceridemia in humans, adjusting for the envi-
ronmental covariates Age, Sex, and BMI, and to explore
the potential haplotype-environment interactions.

Based on the control genotype data for 5 polymorphic
sites in APOA5 (IVS3+476, c.457, c.553, c.1177, c.1250),
6 common haplotypes are derived by the EM algorithm,
including GGGCT (66.8%), AGGCC (15.3%), GGTCT
(4.2%), GAGTT (9.5%), AGGCT (1.2%), GGGTT (0.9%),
which are labeled as j, j = 0,..., 5, and the most frequent

haplotype 0 = GGGCT is chosen as the reference haplo-

type. We then fit a multinomial logistlic model, where the

disease risk model (8) is specified by βh = βhap with Zh

= {I(h1 = j) + I (h2 = j), j = 1,..., 5}, and the environmental

covariates X including Age, Sex, and BMI. The haplotype-
environment interaction terms include only the interac-
tions of the haplotype GGTCT with Age and BMI, since
these are the only promising interactions according to pre-
liminary analysis. The model (5) for the haplotype-pair

distribution in the controls is specified by m(h, X; γ) = γ0h

+ γ1h S, where γ0h = γ0 and γ1h = γ1 with Zh defined as

above, and S = I(BMI > 23.2), the indicator of BMI being
larger than its mean in the controls. By this model we
allow the dependence between BMI and haplotypes; the
dependence between other environmental factors (Age,
Sex) and haplotypes is less significant in light of prelimi-
nary analysis, and hence is not considered in the final
analysis.

The analysis results are displayed in Table 1. Relative to
the common haplotype GGGCT, the three hapiotypes
AGGCC, GGTCT, and GAGTT are associated with higher
risk of hypertriglyceridemia; the former two were also
identified elsewhere by haplotype-specific analysis (Penn-
acchio et al. [19], Kao et al. [17]), and here by joint anal-
ysis of multiple haplotype effects we further identify
GAGTT as a potential risk haplotype. The significant inter-
action term suggests that the effect associated with the
haplotype GGTCT is modified by age: older carriers of the
GGTCT haplotype have decreased risk for hypertriglyceri-
demia than younger carriers. The estimates of γ1 (data not
shown) reveal that BMI and the haplotypes GGTCT and
GGGCT are dependent in the control population.

Simulation studies
The first simulation study is to examine the finite sample
performance of the proposed method. In each replication,
data on the environmental variable X are simulated from
a standard normal distribution. Given X, the haplotype-
pair distribution in the control population is assumed to
be Pr(H1 = j, H2 = k|X, D = 0) = Pr(j|S, D = 0) Pr(k|S, D = 0)
with S = I(X > 0), namely the distribution of H follows
HWE within each of the strata defined by whether X > 0 or
not. This specification corresponds to a situation where
the hapiotypes and environment covariates are dependent
and hence the gene-environment independence assump-
tion does not hold in the control population; see Chatter-
jee and Carroll [8] for some examples where gene and
environmental factors may be dependent. Following Sat-
ten and Epstein [14], we assume the haplotypes contain 5
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π π
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Table 1: Analysis results of the hypertriglyceridemia data

variable coefficient estimate SE P-value

GGGCT (reference) 0 - -
AGGCC 1.533 0.187 < 0.0001
GGTCT 2.766 0.255 < 0.0001
GAGTT 0.994 0.260 0.0001
AGGCT 1.140 0.584 0.051
GGGTT 0.606 0.649 0.351
GGTCT*Age -0.020 0.010 0.044
GGTCT*BMI -0.052 0.040 0.194
Age (years) 0.030 0.010 0.003
Sex (female) -0.263 0.210 0.212
BMI (kg/m2) 0.293 0.040 < 0.0001
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tightly-linked SNPs, and the associated haplotype fre-
quencies {Pr(j|S,D = 0), j = 0,..., J-1} in stratum S are listed
in Table 2 for S = 0, 1. By convention, we choose the most
common haplotype 0 = "10011" as the reference haplo-
type. Further, we choose the haplotype 4 = "01100" as a
putative susceptibility haplotype. Data on the haplotype
pair and disease phenotype are then generated according
to the multinomial logistic model (7), with βH and βHX
specified respectively as βH = βhapZH and βHX = βintXZH,
where we take ZH to be either I(H1 = 4) I(H2 = 4), I(H1 = 4)
+ I(H2 = 4) - I(H1 = 4)I(H2 = 4), or I(H1 = 4) + I(H2 = 4) when
a recessive, dominant, or multiplicative genetic law is
assumed, and βhap and βint are respectively the marginal
effect of the risk haplotype 4 and the interaction between
this haplotype and X. A case-control sample with 415 con-
trols and 796 cases is then selected from a larger set of
data. When analyzing the data, we ignore the phase infor-
mation for haplotype data and use only the unphased
genotype data. Further, we allow the genotype data to be
missing independently and randomly for SNPs 1–5 with
probabilities 2.9, 5.6, 5.4, 4.5, and 2.3%, respectively.

In each setting considered, we set α = -3, βX = 0.3 and βhap
= 0.1. The haplotype-environment interaction parameter
βint, which is the main focus here, is set to 0, 0.15, or 0.3.
The results based on 500 replications are displayed in
Table 3. The point and standard error estimates for the
association parameters are essentially unbiased, and the
coverage of the 95% confidence intervals is close to the
nominal value. In particular, the size of the Wald test for
testing H0 : βint = 0 essentially attains its nominal value,
and the associated power for detecting haplotype-envi-
ronment interaction is satisfactory when βint = 0.3. The

point and standard error estimates for the haplotype fre-
quencies also match the true values well (results not
shown). We also conduct analysis where the effects of rare
haplotypes (with frequency 1%–5%) are estimated (data
not shown). The point estimate essentially remains unbi-
ased, while the standard-error estimate underestimates
the true value. As commented by a referee, here a permu-
tation-based procedure may be required for proper infer-
ence.

In the second simulation study, we compare the proposed
method with some existing alternatives, including the
methods by Zhao et al. [12] and by Spinka et al. [9]. To
facilitate the comparison among these methods that are
based on different assumptions, we conduct the simula-
tion under a setting where the disease is rare, and the hap-
lotype-pair distribution in the whole population follows
HWE and is independent of the environmental covariate.
All the methods considered can apply well under this set-
ting. Specifically, in each simulation we first simulate the
environmental covariate X from a standard normal distri-
bution, and then simulate the haplotype pairs in the
whole population according to HWE with the marginal
haplotype frequencies given in the third column (S = 0) of
Table 2. The disease phenotype is then generated by the
logistic regression model

logit {Pr(D|H, X)} = α + βHH + βXX + βHXHX,  (15)

where βH = βhapZH, βHX = βintZHX with ZH = I(H1 = 4) I(H2 =

4), and α = -3, βX = 0.3, βhap = 0.1, βint = 0 or 0.3. The phase
information is ignored and only the unphased genotype
information is used when analyzing the simulated data.
We also allow the genotype data for SNPs 1–5 to be miss-
ing independently and randomly with probabilities as in
the first simulation study.

When applying the methods of Zhao et al. [12] and
Spinka et al. [9], we employ the same models used to gen-
erate the data, hence the model specification is fully cor-
rect. The method of Spinka et al. is implemented using
either a grid-search method or the known value of Pr(D =
1) to estimate α. When applying our proposal, we simply
assume the control haplotype-pair distribution is inde-
pendent of X and satisfies HWE, which is in fact a moder-
ately wrong specification in the current simulation setting.

Table 4 exhibits the simulation results based on 500 rep-
lications. Although applied with a moderate model mis-
specification, the estimates from our proposal have small
bias, and are more efficient than estimates from other
approaches. The method of Spinka et al. [9] is less efficient
than our proposal, even if the former further incorporates
supplementary information on population disease preva-
lence. It is worth noting that, although the method of

Table 2: Haplotypes and frequencies used in simulation studies

frequencies Pr(|S, D = 0)

label haplotype S = 0 S = 1

0 10011 0.3327 0.3624

1 00100 0.0037 0.0040

2 00110 0.0010 0.0011

3 01011 0.1409 0.1535

4 01100 0.2489 0.1818

5 01101 0.0005 0.0005

6 01110 0.0035 0.0038

7 01111 0.0007 0.0008

8 10000 0.0129 0.0140

9 10010 0 0009 0.0010

10 00010 0.0063 0.0069

11 10100 0.0611 0.0666

12 10110 0.0336 0.0366

13 11011 0.1416 0.1542

14 11100 0.0101 0.0110

15 11110 0.0009 0.0010

16 11111 0.0007 0.0008
Page 7 of 12
(page number not for citation purposes)



BMC Genetics 2006, 7:43 http://www.biomedcentral.com/1471-2156/7/43
Spinka et al. and our proposal are both based on maxi-
mum likelihood estimation, they are in fact based on dif-
ferent modeling frameworks, hence they may results in
parameter estimates with different efficiency. Both our
proposal and the method of Spinka et al. are much more
efficient than the method of Zhao et al. [12], consistent
with the finding of Satten and Epstein [14] that fully pro-
spective analysis such as the method of Zhao et al. may
lose considerable efficiency for haplotype association
analysis in case-control studies.

To examine the sensitivity of the proposed method to the
model assumptions, we conduct a simulation study to
assess the bias of the estimates when the haplotype-pair
distribution is wrongly assumed to follow HWE in the
proposed method. Specifically, here we generate the hap-
lotype data in the controls from the model

where the fixation index parameter f = 0.1 or 0.2, and πj, j
= 0,...,16, are haplotype frequencies given in the third col-
umn (S = 0) of Table 2; namely, the control haplotype-

pair distribution does not follow HWE. However, we
wrongly assume that HWE holds for this distribution in
our analysis model. The environmental covariate X is gen-
erated from standard normal distribution, and the disease
phenotype is generated according to (15). From the
results shown in Table 5, we observe remarkable biases for
the estimates of the main haplotype effect βhap when the
genetic law is recessive or dominant, though the estimates
for the interaction parameter βint is rather robust. This
observation is consistent with that made by Satten and
Epstein [14]: the methods based on the retrospective like-
lihood, such as our proposal, is generally less robust to the
model assumptions such as HWE.

Discussion
In the absence of environmental covariates, Epstein and
Satten [7] (see also Satten and Epstein [14]) constructed
their likelihood using a fully retrospective parameteriza-
tion based only on (5) and (6). Therefore, in the absence
of environmental covariates, the retrospective likelihood
in Epstein and Satten [7] is exactly equivalent to that con-
sidered in our proposal. Our proposal, though based on a
retrospective likelihood, can be implemented as if it were
a prospective likelihood by introducing a multinomial
logistic model and applying the profile livelihood
approach given in Methods section. This is a preferred fea-

Pr( , | , )
( ) ,

( ) ,
H H X D

f j k

f f j k
j k

j k

j j

1 2
20

1

1
= = = =

− ≠

+ − =

⎧
⎨
⎪

⎩⎪

π π

π π

Table 3: Summary statistics for the first simulation studies

Recessive Law Dominant Law Multiplicative Law
βX βhap βint βx βhap βint βx βhap βint

βx = 0.3, βhap = 0.1, βint = 0
biasa 0.000 -0.030 -0.002 -0.001 -0.003 0.004 0.003 0.000 -0.007
SEb 0.064 0.200 0.186 0.072 0.121 0.094 0.071 0.112 0.082

c
0.063 0.198 0.184 0.073 0.119 0.096 0.072 0.108 0.082

coverd 0.944 0.945 0.948 0.955 0.950 0.957 0.959 0.943 0.946
sizee - - 0.053 - - 0.043 - - 0.054

βX = 0.3, βhap = 0.1, βint = 0.15
biasa 0.002 0.031 -0.011 0.001 0.006 0.000 0.003 -0.003 0.008
SEb 0.061 0.196 0.183 0.075 0.120 0.099 0.075 0.104 0.085

c
0.063 0.199 0.180 0.073 0.120 0.094 0.072 0.109 0.079

coverd 0.953 0.967 0.943 0.950 0.945 0.950 0.948 0.965 0.925
powerf - - 0.155 - - 0.390 - - 0.518

βx = 0.3, βhap = 0.1, βint = 0.3
biasa 0.000 -0.027 0.002 0.004 0.004 0.010 0.000 0.003 0.002
SEb 0.067 0.204 0.168 0.074 0.112 0.089 0.070 0.110 0.074

c
0.063 0.201 0.174 0.074 0.121 0.093 0.072 0.111 0.076

coverd 0.933 0.965 0.957 0.952 0.967 0.952 0.967 0.947 0.960
powerf - - 0.425 - - 0.932 - - 0.978

aSimulation mean of the parameter estimates minus the true value.
bSimulation standard error of the parameter estimates.
cSimulation mean of the estimated standard errors.
dCoverage probability of 95% confidence interval.
eSize of Wald test for testing H0 :βint = 0.
fPower of Wald test for testing H0 : βint = 0.

SE

SE

SE
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ture since a prospective analysis is more straightforward
than a retrospective one. Moreover, our proposal provides
an important extension of the Epstein and Satten's
method to further incorporate environmental covariates.

Recently, based on the work of Chatterjee and Carroll [8],
Spinka et al. [9] developed a profile likelihood approach
to genetic association analysis with missing genetic infor-
mation. In particular, for haplotype association analysis
with unphased genotype data, their approach is based on
a prospective logistic disease model Pr(D|H, X) together
with a parametric model for Pr(H|X), the haplotype-pair

distribution in the whole population given the environ-
mental covariates. The implementation of the method of
Spinka et al. generally requires estimating the true inter-
cept parameter α in the prospective disease model (8).
Since in a case-control sample there would be little infor-
mation on this parameter due to the nature of biased sam-
pling, the information matrix would he nearly singular,
causing computational problems. Spinka et al. [9] sug-
gested using either a grid-search method or supplemen-
tary information on the population disease risk Pr(D = 1)
to estimate α. They also suggested a rare-disease approxi-
mation thereby estimation of α is not needed. Note that

Table 5: Summary statistics for the third simulation studies

Recessive Law Dominant Law Multiplicative Law
βX βhap βint βX βhap βint βX βhap βint

βX = 0.3, βhap = 0.1, βint = 0
fixation index f = 0.1

bias -0.002 0.410 0.003 0.004 0.182 0.004 -0.002 0.021 0.004
SE 0.066 0.146 0.124 0.070 0.118 0.074 0.072 0.115 0.060

0.063 0.163 0.126 0.070 0.114 0.075 0.070 0.102 0.058

cover 0.910 0.275 0.951 0.928 0.608 0.957 0.930 0.893 0.946
fixation index f = 0.2

bias 0.001 0.775 0.003 0.006 0.370 -0.002 -0.005 0.026 0.005
SE 0.063 0.161 0.121 0.068 0.112 0.071 0.072 0.117 0.064

0.063 0.155 0.115 0.070 0.113 0.075 0.070 0.102 0.058

cover 0.928 0 0.925 0.928 0.105 0.956 0.910 0.873 0.922

SE

SE

Table 4: Results of comparison of various methods, including Zhao et. al. [12] (Zhao), Spinka et al. [9] using grid-search (Spinka, grid) 
or supplementary information on Pr(D = 1) (Spinka, suppl.), and the proposed multinomial logistic regression method (Proposed)

Zhao Spinka, grid Spinka, suppl. Proposed

βX βhap βint βX βhap βint βX βhap βint βX βhap βint

α = -3, βX = 0.3, βhap = 0.1, βint = 0
biasa 0.002 0.025 0.028 0.002 -0.010 0.015 0.002 -0.020 -0.005 0.002 -0.021 -0.016
SEb 0.066 0.269 0.254 0.065 0.188 0.155 0.060 0.189 0.155 0.059 0.170 0.142

c
0.064 0.260 0.268 0.063 0.187 0.159 0.063 0.183 0.153 0.063 0.175 0.143

coverd 0.948 0.958 0.975 0.955 0.957 0.965 0.943 0.947 0.952 0.970 0.947 0.955
sizee - - 0.025 - - 0.035 - - 0.048 - - 0.045

α = -3, βX = 0.3, βhap = 0.1,βint = 0.3
biasa 0.001 0.022 0.029 0.000 -0.009 0.029 -0.006 -0.017 0.005 0.001 -0.028 -0.019
SEb 0.064 0.269 0.289 0.063 0.197 0.182 0.061 0.193 0.152 0.064 0.187 0.137

c
0.064 0.265 0.277 0.063 0.193 0.161 0.063 0.189 0.154 0.063 0.181 0.137

coverd 0.950 0.952 0.936 0.948 0.958 0.923 0.954 0.948 0.950 0.954 0.948 0.956
powerf - - 0.198 - - 0.524 - - 0.480 - - 0.513

aSimulation mean of the parameter estimates minus the true value.
bSimulation standard error of the parameter estimates.
cSimulation mean of the estimated standard errors.
dCoverage probability of 95% confidence interval.
eSize of Wald test for testing H0 : βint = 0.
fPower of Wald test for testing H0 : βint = 0.

SE

SE
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an earlier proposal by Stram et al. [20] is equivalent to the
method of Spinka et al. when there are no environmental
covariates and the information on population disease
prevalence is used.

Although both the two methods have a prospective logis-
tic model Pr(D|H, X) for the disease risk, our proposal
specifies a model for Pr(H|X, D) = 0), the distribution of
haplotype pairs in the control population given the cov-
ariates, while the method of Spinka et al. specifies the
whole-population counterpart Pr(H|X).

In practice, although the assumption of HWE in the whole
population may usually imply the same assumption hold
in the controls, on the contrary, HWE in the controls may
not necessarily imply HWE in the whole population when
the disease is not rare. Owing to the nature of biased sam-
pling, in a case-control sample it would be more plausible
to check distributional assumptions for the control popu-
lation than for the whole population, since in case-control
studies estimating the control distribution Pr(H|X, D = 0)
is more straightforward than estimating the population
distribution Pr(H|X). Consequently, the proposed mode-
ling strategy seems more suited to the case-control design.

When the disease is rare, Spinka et al. [9] suggested a rare-
disease approximation when the disease prevalence is
unknown. Their approximated likelihood has the same
form as our proposal. Note that the validity of our likeli-
hood does not rely on any rare-disease assumption; it
serves as an exact likelihood in its own right under the
modeling setup we consider. This implies that, for a com-
mon disease with unknown disease prevalence, our pro-
posal can still work well when a suitable model can be
specified for the haplotype-pair distribution in the con-
trols, while the proposal of Spinka et al. with the rare-dis-
ease approximation can result in severe bias in this case.
To illustrate this, we conduct a simulation with the same
setting as in the second simulation study described in the
previous section, except that a is now set to -0.5, corre-
sponding to a common-disease situation. In the case
when (βX, βhap, βint) = (0.3, 0.1, 0.3), the estimates of
Spinka et al. with rare-disease approximation have sub-
stantial biases (-0.005, -0.76, -0.168) for these parame-
ters.

Zhao et al. [12] proposed an estimating equation
approach to haplotype association analysis, which is
based on the score of a prospective likelihood; a similar
prospective-likelihood approach for haplotype-environ-
ment interaction is also proposed by Lake et al [21]. These
approaches are very easy to implement, and are particu-
larly suitable for the case where a larger number of SNPs
are involved. Also, they are found to be quite robust to
mis-specification of the haplotype-pair distribution. The

main drawback for such approaches is that they may be
remarkably inefficient as compared to the retrospective
likelihood-based methods such as our proposal and the
method of Spinka et al. [9]; see Satten and Epstein [14] for
a comprehensive efficiency comparison.

Conclusion
To assess the association of haplotype and environmental
factors with disease, we have proposed a new modeling
setup that can be integrated into a multinomial logistic
model, and can also be decomposed into a prospective
logistic model relating the haplotype and environmental
factors with disease, as well as a parametric model for the
haplotype-pair distribution in the control population
given the environmental covariates. The new proposal
amounts to a natural extension of the method of Epstein
and Satten [7] to further incorporate environmental cov-
ariates. The modeling strategy we adopt is very suited to
the case-control design in the sense that, in contrast to the
procedure proposed by Spinka et al. [9], the maximum
likelihood estimation for the proposed model does not
require any information on the population disease risk,
which is usually lacking in a case-control sample. In fact,
the maximum likelihood estimation for the proposed
model with case-control data can be readily performed by
applying a typical EM algorithm to a prospective multino-
mial logistic regression model. A SAS Macro implement-
ing the proposed method is available from the
corresponding author.

Note that the proposed method does not rely on specific
modeling assumptions such as rare-disease, gene-environ-
mental independence, and Hardy-Weinberg equilibrium
assumptions, hence is applicable in very general settings,
as long as the models involved are identifiable and appro-
priately specified. In addition, simulation results show
that our proposal can achieve satisfactory efficiency.
Accordingly, our proposal may serve as a useful tool for
assessing the haplotype-environment associations with
disease in population-based case-control studies. One
limitation is that, unlike the prospective analysis, the pro-
posed method, which is based on a retrospective likeli-
hood, is sensitive to the model assumptions; namely,
model mis-specification may lead to substantial bias, as
commented by Epstein and Satten [7]. Therefore, the
model specification is crucial in the proposed method to
warrant valid analysis.

Some additional work is needed to strengthen the utility
of the proposed method. First, if the main interest is in the
association parameters and the haplotype-pair distribu-
tion is regarded as nuisance, then it would be desirable to
improve the proposed method so that it can still yield
valid estimates for the association parameters while
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allowing the model for the haplotype-pair distribution to
be slightly misspecified.

Another important issue for haplotype-based association
analysis involves the variable selection. When dealing
with a larger number of haplotypes, efficient and effective
methodologies for variable selection is crucial for finding
the haplotypes contributing to liability for complex dis-
eases [24,1]. Promising strategies include the step-wise
selection [22], Lasso [23,24] and the false discovery rate
(FDR) procedure [25,24]. How to incorporate appropriate
variable selection procedures in the proposed multino-
mial logistic model with unphased genotype data deserves
further investigation.
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Appendix
Appendix 1 the identifiability conditions
Given a model for m(H, X; γ) (the haplotype-pair distribu-
tion in the control population given covariates) and a
fixed value of γ, identifiability conditions of the models
for βH (main effects of haplotype pairs) and βHX (haplo-
type-environment interactions) can be obtained by argu-
ments similar to those in Epstein and Satten [7]. Let β be
the collection of the parameters involved in βH and βHX.
According to (9), for any covariate value x observed in the
case sample, the value of Pr(D = 1, G = g|X = x;θ) remains
unchanged for a change in β if there exists some vector φ
such that φ'Rg(x) = c for every genotype g, where c is a con-
stant and

Let R(x) be the matrix with the gth row given by Rg(x)'.
Therefore, the models βH and βHX are identifiable if for any
covariate value x we have: (1) R(x)'R(x) has full rank so
that R(x)φ ≠ 0 for any φ ≠ 0, and (2) R(x)'1 = 0 where 1
denote a vector of ones.

Appendix 2 the derivation of the profile likelihood
Since we treat the distribution P of X nonparametrically, it
is sufficient to assume that P is discrete and has support
points {x1,...,xK}, the unique values of X that are observed
in the case-control sample. Let G = 0,..., Q - 1 denote labels
for the observed unphased genotypes in the sample with
G = 0 denoting a reference genotype and Q the number of
distinct genotypes. Let δk = Pr(xk), k = 1,..., K, nigk the

number of subjects with D = i, G = g and X = xk, and Pigk(θ)
= Pr(D = i, G = g|X = xk; θ), i = 0, 1, g = 0,..., Q - 1, and k =
1,..., K. The loglikelihood for the case-control sample is
given by

The maximum likelihood estimate of δ for fixed θ, subject
to ∑k δk = 1, satisfies

where n++k = ∑ig nigk, and

Substituting the right side of (16) for δk in L, the profile
loglikelihood is obtained as, aside from additive con-
stants,

where

It is easy to see that

and

From (9) we thus have

where

Λih(X; θ*) = i(α* + βh + X'βX + X'βhX) + m(h, X; γ),

and α* = α + log(ν1/ν0).
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Appendix 3 expressions of complete-data score and 
information matrix
Simple algebra leads to

where E*(·|X) denotes expectation with respect to Pr*(D,
H|X; θ*).

The negative derivative of  (θ*) is given by

Note that the bracket term has mean zero. Hence the com-
plete-data information matrix can be approximated by

where V*(·|X) denotes the variance with respect to Pr*(D,

H|X; θ*). The negative derivative, of ∑u ∑h ρhu (θ*) can

thus be approximated by ∑u ∑h ρhuv* (Xu; θ*) = ∑uv* (Xu;

θ*), where
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