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Abstract

A supervised learning method, support vector machine, was used to analyze the microsatellite
marker dataset of the Collaborative Study on the Genetics of Alcoholism Problem | for the
Genetic Analysis Workshop 14. Twelve binary-valued phenotype variables were chosen for
analyses using the markers from all autosomal chromosomes. Using various polynomial kernel
functions of the support vector machine and randomly divided genome regions, we were able to
observe the association of some marker sets with the chosen phenotypes and thus reduce the size
of the dataset. The successful classifications established with the chosen support vector machine
kernel function had high levels of correctness for each prediction, e.g., 96% in the fourfold cross-
validations. However, owing to the limited sample data, we were not able to test the predictions

of the classifiers in the new sample data.

Background

Alcoholism is a complex genetic disease, and the Collab-
orative Study on the Genetics of Alcoholism (COGA) has
been extensively investigating its underlying mechanisms.
Like many other complex diseases, alcoholism presents
extraordinary challenges to both the diagnostic categori-
zation of individuals with alcoholism-related traits and
the genetic analyses of these traits using conventional
linkage analysis approaches because the disease does not
have a simple single-locus etiology. Analyses of complex
diseases involve the investigation of multiple genes and
their interactions in contribution to the susceptibility to
the disorder. In this study, we addressed these issues by
exploring an approach to reduce the size of the marker set
and computational burden in the further linkage analyses.

In light of the recent development and successful applica-
tion of machine learning theories in other areas, we
hypothesized that support vector machine (SVM) [1] is an
ideal method to be adapted to the alcoholism dataset pro-
vided by COGA for the Genetic Analysis Workshop 14. To

test this hypothesis, we focused on the microsatellite data-
set for the relatively lower requirement of experimental
computation resource. We believe the resultant method
established on the microsatellite dataset could be adapted
to large single-nucleotide polymorphism datasets.

In theory, for a given training data (x;y;), where x; is the ith
record, there is a vector of attributes with m elements (also
called m dimensions), and y; is the corresponding categor-
ical value (usually a binary value). A binary classifier
called a hyperplane - a plane in a high-dimension space
only separating data dots into two subspaces — can be
built up to separate the class members of the datasets.
However, real-world problems involve inseparable data
for which such a hyperplane does not exist [1,2]. One
solution is to map the data into a higher-dimensional
space (called a feature space) and define a hyperplane
there. This binary classifier hyperplane can be linear if the
feature space reaches a sufficiently high dimension. How-
ever, as the feature space dimension increases, both com-
putational and learning-theoretic costs are incurred, and
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Table I: Twelve phenotype variables

No. Label name of phenotypic traits Description

| Deceased Individuals who are deceased

2 ALDX A combination of ALDXI and ALDX2

3 Binge Ever binge drink

4 Blackouts Blackouts (3 or more)

5 Morning Morning drinking

6 Craving Craving

7 Pers Persistent desire to stop drinking

8 Narrow Narrowing of drinking repertoire

9 GUATD Stands for "give up activities to drink"

10 WDSX Stands for "withdrawal symptoms (2 or more together)"
I Phy Physical health problems from drinking

12 Emo Emotional/psychological problems from drinking

Note: categorical values are assigned as — | for No and | for Yes In case of ALDX, -1 for < 3 and | otherwise

the learning system is exposed to the risk of finding trivial
solutions, i.e., of overfitting. To overcome these difficul-
ties, the SVM chooses the maximum margin that allows
for separating the hyperplane from other choices while
avoiding overfitting. SVM uses kernel functions for the
data mapping between input space and feature space,
which significantly decreases the computational burden.
When a dataset contains mislabeled examples or an inap-
propriate kernel function was chosen, the SVM might
have difficulty separating groups. The former problem can
be addressed by using a soft margin that allows some
training examples to fall on the wrong side of the separat-
ing hyperplane. Thus, two parameters are needed to adjust
the SVM according to the types of datasets undergoing
classification: the kernel function and the magnitude of
the penalty for violating the soft margin. Besides errors in
these parameters, an imbalance in the number of positive
and negative training examples, in combination with
noise in the data, is likely to cause the SVM to make incor-
rect classifications. So does the situation in which the
number of attributes is far greater than the number of
total records in the training data are likely to cause the
SVM to make incorrect classifications.

The SVM is a supervised learning method, which has the
ability to weigh input features, e.g., markers, according to
their relevance to the classification scheme as determined
through the learning process [1-3]. Once learning is com-
plete, in the form of an established hyperplane, SVM
could be used to generalize to the unseen data, i.e., to
make a prediction.

Materials

We chose 315 microsatellite markers on 22 autosomal
chromosomes with 12 different phenotype variables. The
22 sub-datasets of each chromosome were merged into

one single genome dataset and then were appended with
a chosen phenotype variable for a specific session of the
SVM run.

Phenotype variables

The 12 phenotype traits (Table 1) were selected on the
basis of the following considerations: the trait is conven-
ient for the preliminary analysis; there is less missing data
for the chosen variable; it is easy to organize the data
according to the trait (e.g., binary form); the results can be
compared with those from other analyses; and the results
are representative of our analysis methods. The genotypes
of the microsatellite marker data were transformed into
numeric codes based on the types of the original allele
pair.

Random sub-datasets

We then randomly created two types of sub-datasets: the
random block and random set. The random block was
generated by randomly choosing a number, called the
block size, from the spectrum of genomic markers (total
315 across all 22 autosomal chromosomes) or from a
specified number of markers (in order to limit the result-
ing file size to accelerate the subsequent computation)
and then randomly choosing a number as a starting posi-
tion within the 315 spots. The resulting file will then con-
tain a block of continuous markers from the starting spot
to the block size. The random set is generated by ran-
domly choosing a number, called the set size, between 1
and the total number of markers (in this case, 315), and
then randomly choosing spots within this spectrum of
genomic markers, without duplication, until the number
of picked spots equals the set size. The resulting file will
thus contain a subset of the 315 markers in a "sporadic"
pattern across the whole genome. Each of the two types of
random sub-datasets was created in a number from 5,000
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to 20,000 for each of the 12 single-phenotype-assigned
datasets.

Sequential "walk" of sub-datasets

For systematically screening the continuous block of
markers, we designed another method of generating sub-
datasets by determining a block size and then sequentially
"walking" through from the first marker to the last. The
block size could be 1 to 315 in order to cover the entire
genome. However, owing to the huge size of the resulting
data files and the great demand of this approach on the
computing resources, we were able to perform only a lim-
ited analysis.

SVM analysis

For this study, we focused on the dot kernel, in the form
of K(x,y) = x * y, and the polynomial kernels as K(x,y) = (x
* y + 1)4, where d is the degree that defines d-fold interac-
tions between attributes, i.e., x; *x; *..%x; .Inour pre-

liminary studies, we examined the dot kernel and the
polynomial kernels using various degrees for a total of
315 microsatellite markers on 22 autosomal chromo-
somes with 12 different phenotype variables. Increasing
the degree of the kernel function improves the separation
power of the SVM; however, a higher-degree kernel func-
tion will reach a stage where the underlying dataset
becomes inseparable owing to an over-learning problem.
Thus, a bound on kernel function choice and distinction
in data separability can be established.

SVM program

The SVM program that we used was MYSVM, version 2.1
for Windows and version 2.1.4 for UNIX/Linux, which
was written by Riiping [4] and downloaded from http://
www.cs.ucl.ac.uk/staff/M.Sewell/svm. All data were ana-
lyzed using four-fold cross-validations and kernel func-
tions of dot and polynomials with degrees ranging from 1
to 6 (in some cases, degrees of polynomial kernels went to
7 through 9, 12, and 20). In the four-fold cross-validation
of each sub-dataset, data were randomly partitioned into
four roughly equal parts and underwent SVM analysis
four times. In each analysis, one-quarter of the data was
left out for prediction based on the learning/training of
the remaining three-quarters of the data. A positive result
was achieved when each of the four cross-validations
yielded a pre-determined percentage of correct predic-
tions, e.g., 99%. The marker sets were then used to iden-
tify the corresponding genome region.

Missing values

The records were deleted if either the appended pheno-
type variable was missing or the record itself contained
more than a certain percentage, e.g., 20%, of missing val-

ues among all attributes (markers). The remaining miss-
ing values were represented using -9, -999, or -1 (we have
not yet experimented with them meaningfully to deter-
mine the effect of different values on the SVM analysis
results). As a result, the maximum number of individuals
(records) was 1,204 (versus 1,614 in the original data)
and the minimum was 984 (Table 2).

Results

As we expected, the analysis of data for the deceased phe-
notype variable yielded null results in both random block
and random set sub-datasets. Most outputs from MYSVM
showed zero members in trait class assigned value 1 dur-
ing data partition for the four-fold validation. This was
because there were only two members in this group. This
verifies the fact that imbalanced data are difficult for SVM
to separate.

On the other hand, our analytical runs of MYSVM for the
other phenotype variables all generated various percent-
ages of positive results. From a series of randomly gener-
ated random block sub-datasets with ALDX phenotypes,
for example, we performed MYSVM analyses with polyno-
mial kernel functions of various degrees (from two
through seven). About 43% of the output files showed
positive results with some degree of the polynomial func-
tions when the percentage of correctness was set at greater
than 96%. However, about 38% of them showed repeated
positive results when running three different polynomial
kernel functions, and about 16% showed repeated posi-
tive results with four or more different kernels (the maxi-
mum in this run of the analysis). Figure 1 shows a selected
collection of the results from one of the groups picked.
From a vast number of groups (which are not presented
here), we observed that the positive results were only from
block sizes of six or higher. (Our partial run of sequential
walks using block sizes of one through four failed to yield
positive results at trials with several different kernel func-
tions, which confirms this observation.) In the results pre-
sented here, the smallest block size was nine. We also
observed that the blocks that show positive results
appeared more frequently in the regions of chromosomes
1,2, and 6.

In Figure 1, the blocks and their covering marker regions
are shown in light gray and the more frequently covered
regions are framed. The markers with the heaviest cover-
age are dark gray with frames. These regions and markers
are considered to show association with the ALDX pheno-
type trait using this categorization (i.e., 1, 2, and 3 as class
1, and 5 as class 2). When briefly comparing these associ-
ation markers with those reported from the linkage anal-
yses from other studies, we find some are matching with
the linkage result, e.g., D15S532, which shows a high LOD
score in a previous analysis [5].
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Table 2: Twelve genome datasets with phenotype variables

No. Label name of
phenotypic traits

Proportion of classes Total records

No. of "-1" No. of "-1" "1 vs "

| Deceased 1202 2 601.0 1204
2 ALDX 273 927 0.3 1200
3 Binge 711 312 23 1023
4 Blackouts 624 399 1.6 1023
5 Morning 627 395 1.6 1022
6 Craving 826 197 42 1023
7 Pers 495 528 0.9 1023
8 Narrow 766 218 35 984

9 GUATD 767 256 3.0 1023
10 WDSX 776 235 33 1011
I Phy 833 190 4.4 1023
12 Emo 746 277 2.7 1023

Similar results are found not only in the remaining
regions of the genome for this ALDX phenotype trait but
also in the whole genome for other phenotype variables.
We believe SVM is effective in recognizing the marker pat-
tern and predicting the phenotypic traits, thus making it
possible to reduce the size of the dataset.

Discussion

In this study, we used SVM methodology as an initial
exploration technique for alcoholism data. There are
many details both in study design and data processing
that need to be adjusted. However, our study shows that
this approach is useful for association studies and for
detecting causal genes in future efforts.

The COGA microsatellite dataset has enough markers and
samples to allow us to test different search strategies for
SVM analysis. For example, the SVM is sensitive to the spe-
cific composition of the dataset that was used in the anal-
ysis, i.e., the number of markers and the number of
individual records. Changing one marker or record in a
dataset successfully separated by SVM could result in
changes in the next SVM analysis. Exhausting (full cover-
age of) the entire marker set (feature space) during the
SVM analyses is still a challenge and needs further explo-
ration. Genetic algorithms have been shown to achieve
better coverage in searching the feature space. However,
developing a proper fit function will be the key, and this
is, as yet, case dependent. Otherwise, SVM produces the
search that leads to local optimums. Nonetheless, we con-
sider this direction worth investigating to make the SVM
method more suitable to the true large dataset.

The resulting subsets of markers in each successful SVM
analysis from the dataset contain both "hot spots,” i.e.,
markers with high LOD scores in other linkage analyses,

and no regions of linked markers. But we have not devel-
oped or yet seen in the reports of other data mining stud-
ies a testing method for proving the enclosure of the "hot
spots" after reduction by such a data mining method as
SVM. At this stage, we would suggest that the reduced
marker sets in these SVM-separated datasets at least pro-
vide the hypothesis that some of the markers in the result-
ing set are possibly associated with the corresponding
phenotypic trait, which can be tested in the replication
datasets. A focus of linkage or association analysis starting
with these reduced datasets would be beneficial in cases in
which computation resources are heavily restricted and
would reduce the number of tests significantly. SVM also
proves its efficiency and high capability in searching and
analyzing data genome-wide. Such an advantage is even
more valuable when analyzing multi-gene or gene x gene
interaction diseases such as alcoholism.

In this study, we did not have the opportunity to develop
the SVM method to make full use of the information con-
tained in the provided dataset. Although we noticed that
similar situations exist in other data mining studies, we
believe that to integrate information such as that derived
from the pedigree and the IBD sharing values into the
input features of the SVM will greatly enhance the final
results. Such pre-analysis data preparation, including the
proper selection of a coding system for the input genotype
data, will improve the resolution of SVM analyses.

Conclusion

The SVM is an effective approach for association analysis,
data reduction, and pattern recognition when a given
dataset is large. This is especially advantageous as technol-
ogy has driven the information yield to a higher level and
we are facing more and more overgrown-sized datasets.
On the other hand, SVM has not yet been fully explored
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Figure |

Results of microsatellite markers pattern/association with ALDX with maximum (4) repeating positives from SVM analysis

using 4 different kernels.

in genetic studies. Tailoring data preparation and infor-
mation transformation in a way suitable to SVM analysis
still remains to be done.
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