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Abstract

The presence of disease is commonly used in genetic studies; however, the time to onset often
provides additional information. To apply the popular Cox model for such data, it is desirable to
consider the familial correlation, which involves kinship or identity by descent (IBD) information
between family members. Recently, such a framework has been developed and implemented in a
UNIX-based S-PLUS package called kinship, extending the Cox model with mixed effects and
familial relationship. The model is of great potential in joint analysis of family data with genetic and
environmental factors. We apply this framework to data from the Collaborative Study on the
Genetics of Alcoholism data as part of Genetic Analysis Workshop 14. We use the S-PLUS package,
ported into the R environment http://www.r-project.org, for the analysis of microsatellite data on
chromosomes 4 and 7. In these analyses, IBD information at those markers is used in addition to
the basic Cox model with mixed effects, which provides estimates of the relative contribution of
specific genetic markers. D4S1645 had the largest variance and contribution to the log-likelihood
on chromosome 4, but the significance of this finding requires further investigation.

function called coxme that includes components of the

Background

While most genetic data analyses focus on disease events,
ages of disease onset contain valuable information. Soft-
ware for such analyses has been limited, and include the
AGEON module in SAGE, the LINKAGE package that
allows age classes with different penetrances in these
classes, and the computer program LIPED that allows a
log-normal/straight-line distribution. The Cox model for
survival analysis is well established and has been extended
to include random effects. When applied to family data, it
is necessary to account for familial correlation and to
include the identity-by-descent (IBD) information.
Among models recently proposed with these compo-
nent(s) [1-4], the framework by Therneau [2] appears to
be the most comprehensive. Building on the established
module survival in S-PLUS, a new UNIX package kinship
has been developed, which contains, among others, a

Cox model, random effects, and familial relationship.

Earlier reports on candidate genes for alcohol dependence
[5] showed loci on several chromosomes including 4 and
7, but were limited in the use of age-of-onset information
and confounding factors. Here, the new modelling frame-
work is explored with Genetic Analysis Workshop 14
(GAW14) problem 1 data using microsatellite markers on
chromosomes 4 and 7.

Methods
The mathematical model
The mathematical model can be sketched as

Cox model + random effects = kinship/IBD information,

Page 1 of 4

(page number not for citation purposes)


http://www.r-project.org
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Genetics 2005, 6:5S127

which is an extension of the standard Cox model for
event-times to allow for random effects and the kinship or
IBD information in families.

Following Ripatti and Palmgren [6], let T; denote the event
time for unit i, i = 1, ..., n, C; the censoring time, U, =
min(T;C;), and &, = I(T; < C;), the basic Cox model with
vector of explanatory variables X; is specified via a hazard
function A,(t) = Ay(t)exp(X;H).

The model can be extended to include random effects or
frailties Z;, such that A4(t|b) = Ay(t)exp(X,f + Zpb), b ~
p(b;D(6)), with 6 being a vector of unknown parameters.
The likelihood function is similar in form to that of the
partial likelihood of the standard Cox model. If the cen-
soring is independent and non-informative of b, the like-
lihood function L in terms of (4,(t),3 6) can be obtained

by integrating over b. Assuming b ~ MVN(b,D(6)) and
defining Ay(t) = J;/'Lo(u)du as usual, we have

L= [ TT [o(0esp(XiB + Zb)P expl Ag(t)exp(X,f + Zib)] p(b;D(0))db,
i=1

Next, a Laplace approximation is applied to obtain an
approximate marginal log-likelihood that can be maxi-
mized by a penalized fixed-effects partial likelihood for
parameters (5(6),b(6)) and in turn used in a profile likeli-
hood function involving only 8 [6]. Here the parameters

of interest & are the variances involving kinship ( 0'12 ) and

IBD ( G% ) matrices, such that D( ) is a linear combination

of @ and these matrices. This is reminiscent of a similar
approach found in SAS PROC MIXED, and the specific
relationship between the Newton-Raphson iteration of a
Cox model and a linear mixed-effects model has been
elaborated elsewhere [7]. Further mathematical details,
including the integrated and penalized likelihood and
their degree(s) of freedom, together with an S-PLUS pack-
age for UNIX called kinship by Terry Therneau are availa-
ble from http://www.mayo.edu/hsr/Sfunchtml. The
specific function coxme generalizes coxph in the widely
used S-PLUS package survival by the same author. Due to
some difficulties with the S-PLUS package, it was ported
into the R system http://www.r-project.org. It takes advan-
tage of the recent developments in S3/S4 classes [8] and is
freely available.

The data

The GAW14 problem 1 contains data from the Collabora-
tive Study on the Genetics of Alcoholism (COGA), includ-
ing a large number of pedigrees, microsatellite markers,
and SNPs. A number of phenotypes and covariates are
also available. The alcoholism diagnoses were based on
DSM-III-R, Feighner, and DSM-IV criteria with informa-
tion on ages of onset.

All 143 families in the GAW14 COGA data were used.
These families had an average of 11 members (range 5 to
32) and the total sample size was 1,614 (826 men, 788
women). Two variables represented definitions of alco-
holism: ALDX1 according to DSM-III-R + Feighner defini-
tion, and ALDX2 based on DSM-IV. ALDX1 and ALDX2
largely agree but ALDX1 is less stringent, with 103 "unaf-
fected with some symptoms" under ALDX2 classified as
affected under ALDX1. According to ALDX1, there were an
average of 3 affected members (range 1 to 14) in these
families. In the following analysis, ALDX1 will be used.
Possible confounding variables include sex, ethnicity, and
smoking. We did not adjust for ethnicity in the analysis.
The raw data were extracted and analyzed using C pro-
grams, SAS, and STATA, while IBD information was gen-
erated from SOLAR. Allele frequencies were rescaled when
they did not sum to 1 exactly.

The analysis

The analysis was limited to microsatellite markers on
chromosomes 4 and 7 based on prior publications [5]. For
comparison, we also used STATA, which allows for frailty
with a gamma distribution and two-level analysis. Often
IBD matrices from SOLAR were taken by kinship to be
non-positive definite (possibly due to rounding errors);
therefore, we perturbed the IBD matrices with an identity
matrix with small variance (0.01). Terry Therneau has
indicated that this was not the case with SIMWALK?2.
However, SOLAR was unable to read outputs from
SIMWALK?2.89. Because kinship uses SOLAR output by
default, the SIMWALK 2.89 results were not used. GENE-
HUNTER was used to obtain marker informativeness.
Because each analysis can be viewed as multiple tests to
identify a susceptibility gene on the two chromosomes,
we computed false-discovery rates using SAS PROC
MULTTEST.

Results

There were 266 individuals with no information and 643
(436 men, 207 women) with alcohol dependence, the
mean (SD) ages of onset being 22.8 (9.2) and 21.6 (8.9).
More men than women were alcohol dependent and
smokers were more likely to be alcohol dependent. The
default gamma frailty model of mean one in STATA with
sex gave variance (SE) of 0.063 (0.034) and y2=5.11,p =
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Table I: The integrated }2, p-value, and variances for kinship (612 ) and IBD (G%) matrices for markers with successful optimization

612 =0.22 0'12 and G% are free

Name % p o2 % p of o3

D4S2366 4.79 0.091 0.026 5.48 0.064 0415 | x 106
D4S2639 5.00 0.082 0.057 5.48 0.064 0.414 | x 10
D4S2382 491 0.086 0.048 5.48 0.064 0415 | x 10-¢
GABRBI 537 0.068 0.088 5.48 0.064 0415 | x 10-¢
D4S1645 6.03 0.049 0.121= 6.08 0.048 0.110 0.165
D4S1558 4.77 0.092 0.022 5.48 0.064 0.415 | x 10
D4S1559 5.96 0.051 0.113 6.24 0.044 | x 106 0.202
ADH3 5.06 0.080 0.062 5.48 0.065 0415 | x 106
FABP2 5.97 0.050 0.117 6.12 0.047 0.001 0.206
D4S1625 5.63 0.060 0.101 5.63 0.060 0.232 0.096
D4S1629 6.06 0.048 0.102 6.29 0.043 I x 106 0.175
D4S1626 4.89 0.087 0.039 5.48 0.065 0.415 | x 10
D4S2374 5.42 0.066 0.090 5.49 0.064 0.372 0.023
D4S171 4.78 0.092 0.022 5.48 0.064 0415 | x 10-¢
D4S1652 6.70 0.035 0.123 7.43 0.024 I x 106 0.192
D7S513 5.03 0.081 0.054 5.48 0.064 0414 | x 10-¢
D751802 5.73 0.057 0.099 5.79 0.055 0.056 0.165
D7S629 5.80 0.055 0.101 5.84 0.054 0.104 0.146
D751838 5.40 0.067 0.083 5.49 0.064 0.376 0.020
NPY2 6.18 0.045 0.134 6.65 0.036 | x 106 0.229
D7s817 5.01 0.082 0.054 5.48 0.064 0.414 | x 10
D752846 6.17 0.046 0.132 6.48 0.039 | x 10 0.225
D7s521 6.4| 0.041 0.137 6.88 0.032 | x 106 0.223
D7S691 4.82 0.090 0.028 5.48 0.064 0415 | x 10-¢
D75478 6.02 0.049 0.121 6.30 0.043 | x 106 0.213
D7S679 532 0.070 0.081 5.48 0.064 0415 | x 10-¢
D7S665 5.41 0.067 0.081 5.48 0.064 0415 | x 10-¢
D751830 5.59 0.061 0.101 5.60 0.061 0.150 0.133
D7S3046 6.26 0.044 0.131 6.65 0.036 | x 10 0.220
D751870 6.36 0.042 0.132 6.83 0.033 | x 10 0.217
D7S1797 4.85 0.088 0.035 5.48 0.064 0415 | x 106
D7s820 5.79 0.055 0.113 5.90 0.052 | x 10 0.212
D7S1799 6.07 0.048 0.125 6.40 0.041 | x 10 0.217
D7s1817 4.75 0.093 0.013 5.48 0.064 0415 | x 10-¢
D7S509 5.86 0.053 0.123 6.02 0.049 | x 106 0.228

2Bold text indicates large values for both variances.

0.012 according to a 50:50 mixture of 9512 and x%, com-

parable to a similar model from coxph with a variance esti-
mate of 0.065, p < 0.0001. Simple random effects model
of family membership by coxme gave a variance estimate
of 0.078.

However, it is more appropriate to use a correlated frailty
model with the kinship matrix. This led to a variance esti-

mate of 0.22 and integrated 112 = 5.49 with p = 0.019
compared to the log-likelihood -3534.66 without using

kinship information. D4S1645 (near GABRB1) gave the
largest contribution to the log-likelihood and highest var-
iance (0.221) on chromosome 4. In comparison, D7S509
had the largest variance (0.238) and largest contribution
to the log-likelihood on chromosome 7. The false-discov-
ery rates were 0.044 and 0.030, respectively. When fixing
the variance associated with the kinship matrix at the
value of 0.22, D4S1645 showed the biggest difference in
likelihoods. Due possibly to the similarity between struc-
tures of the kinship and IBD for random effects, most mic-
rosatellite markers and kinship relationship seemed to be
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strongly correlated, except markers D4S1645, D7S629,
and D7S1830. There did not appear to be a link with
marker informativeness (information contents of 58.9%,
53.6%, 61.6% according to GENEHUNTER). These results

are shown in Table 1, where the 32 for the integrated log-
likelihood is listed. Similar results were obtained when
including sex as a covariate (data not shown), with the
regression coefficient (SE) across loci in the range of
0.21~0.23 (0.09~0.10) and p-value in the range of
0.017~0.038; however, the model-fitting was greatly
improved, indicating the importance of covariates in char-
acterizing age of onset. The false-discovery rates were

0.065 (012 = 0.22) and 0.093 (612 and G% are free),

respectively.

Discussion

The framework of Therneau [2] can integrate information
from several sources: the affection status and age of onset,
the familial relationship, genetic information, and covari-
ates. The Cox model is familiar to researchers and accom-
modates counting process [start, stop] notation and time-
dependent covariates, alternative time scales, and multi-
ple events/subject data. Gaussian random effects allow for
efficient analysis of large genetic correlations. Genetic
markers can also be used via a function called Imekin (lin-
ear mixed models with kinship) for the analysis of quan-
titative traits in a way similar to SOLAR. The extended Cox
model and the linear mixed model are flexible in assessing
the relative magnitude of genetic and environmental
influences, including multiple genes. Additional func-
tions include kinship calculation, use of external IBD
matrices and sparse matrices to analyze large, extended
families, and pedigree-drawing for a single or a set of ped-
igrees. The package is more comprehensive than SAS and
STATA in dealing with frailty, and the port to R makes it
freely available to many platforms and represents a grow-
ing trend of integration of statistical genetics into the
mainstream statistical computing. For instance, some data
preparations done by C programs turned out to be much
easier with the function read.fortran as available from R
2.0.0. The model is a natural generalization of the longi-
tudinal model incorporating subject-specific random
effects as given in [9]. It is also a hybrid between the
model for quantitative trait locus linkage using times, and
the model for discrete trait linkage using events. Unlike
the parametric (LOD score) and nonparametric linkage
analysis, which are well established [10], the Cox model
approach is relatively new and requires further develop-
ment.

D4S1645 appears to be promising but requires further
investigation, e.g., the use of IBD information from
SIMWALK? and the exploration of the rapid analysis of

many markers. It is possible to use information on the ini-
tiation of alcohol drinking and environmental factors
such as smoking or social class when available. Ideally,
tightly linked markers can be used in the models for asso-
ciation analysis and comparison made with other models
[1,3,4].

Abbreviations
COGA: Collaborative Study on the Genetics of Alcohol-
ism

GAW14: Genetic Analysis Workshop 14
IBD: Identity by descent
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