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Abstract
Background: Recent studies have indicated that the human genome could be divided into regions
with low haplotype diversity interspersed with regions of high haplotype diversity. In regions of low
haplotype diversity, a small fraction of SNPs (tag SNPs) are sufficient to account for most of the
haplotype diversity of the human genome. These tag SNPs can be extremely useful for testing the
association of a marker locus with a qualitative or quantitative trait locus in that it may not be
necessary to genotype all the SNPs. When tag SNPs are used to reduce the genotyping effort in
association studies, it is important to know how much power is lost. It is also important to know
how much power is gained when tag SNPs instead of the same number of randomly chosen SNPs
are used.

Results: We design a simulation study to tackle these problems for a variety of quantitative
association tests using either case-parent samples or unrelated population samples. First, the
samples are generated based on the quantitative trait model with the assumption of either an
extremal sampling scheme or a random sampling scheme. Second, a small number of samples are
selected to determine the haplotype blocks and the tag SNPs. Third, the statistical power of the
tests is evaluated using four kinds of data: (1) all the SNPs and the corresponding haplotypes, (2)
the tag SNPs and the corresponding haplotypes, (3) the same number of evenly spaced SNPs with
minor allele frequency greater than a threshold and the corresponding haplotypes, (4) the same
number of randomly chosen SNPs and their corresponding haplotypes.

Conclusion: Our results suggest that in most situations genotyping efforts can be significantly
reduced by using tag SNPs for mapping the QTL in association studies without much loss of power,
which is consistent with previous studies on association mapping of qualitative traits. For all
situations considered, two-locus haplotype analysis using tag SNPs are more powerful than those
using the same number of randomly selected SNPs, but the degree of such power differences
depends upon the sampling scheme and the population history.

Background
Single-nucleotide polymorphism (SNP) markers are pre-

ferred over microsatellite markers in association studies
because of their high abundance, low mutation rate, and
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suitability for high-throughput genotyping. The genome-
wide association studies on dissection of human complex
traits need to screen a large number of SNPs. However, it
is prohibitively expensive to genotype all SNPs in an asso-
ciation study with the throughput of current technologies.
Judicial selection of SNPs for association studies is there-
fore of paramount importance. The observation that the
human genome can be divided into regions of high link-
age disequilibrium (LD) with limited haplotype diversity
interspersed with regions of low LD suggests one way of
doing this. The regions with high LD are referred to as
blocks in the literature. One of the objectives in the
Human HapMap project is to describe the set of haplotype
blocks and the SNPs that tag them.

Many methods have recently been developed for haplo-
type block partitioning and tag SNP selection. Available
methods can be classified into two groups – block-
dependent methods and block-free methods – although
all of them are based on LD patterns of the human
genome. The first group of methods relies on haplotype
diversity or pair-wise LD measures such as D' to first par-
tition the haplotypes into blocks and then select tag SNPs
in each resulting block (e.g., [1-5]). The other methods
select tag SNPs directly in accordance with LD patterns
(e.g., [6-8]) or through comprehensive power computa-
tions (e.g., [9-11]) across the human genome. However, it
is still not clear which method should be used in tag SNP
identification. Here, we concentrate on two different
methods. One is a variant of the first group of methods,
which involves partitioning the haplotypes into blocks to
minimize the total number of tag SNPs over a region of
interest or the whole genome [4,5,12,13]. With this
method, we expect to reduce the genotyping effort as
much as possible. The other method selects tag SNPs
based on pair-wise LD measure r2 [6], where for each SNP
the maximum r2 between this SNP and tag SNPs must be
greater than a pre-specified threshold.

The general procedure for using tag SNPs in association
studies can be described as follows. First, a small number
of samples (e.g., 40~50 individuals) are genotyped using
a very dense SNP map. Second, a method or an algorithm
is applied to obtain the set of tag SNPs. Third, a large
number of samples is genotyped at only the tag SNP
marker loci. Fourth, association tests of the SNPs with a
qualitative or quantitative trait of interest are conducted
using all the genotyped samples at tag SNP marker loci.
The above approach can significantly reduce the genotyp-
ing effort [14], but it also causes loss in statistical power
for association studies. There are two key questions. First,
how much power will be lost when tag SNPs instead of all
the SNPs are used. Second, how much power will be
gained when tag SNPs instead of the same number of ran-

domly chosen SNPs are used if only a given number of
SNPs can be genotyped due to limited resources.

Several studies have examined these problems for associ-
ation mapping of qualitative traits. Zhang et al. [12,13]
studied this problem for qualitative traits with simula-
tions and found that the loss of power was moderate – cer-
tainly much smaller than if an equivalent number of
markers had been chosen randomly. Thompson et al. [15]
used similar simulation procedures and observed similar
results. Zhai et al. [16] did a similar simulation study but
chose a set of evenly spaced SNPs with minor allele fre-
quency greater than a threshold. They found that the
power to detect association with evenly distributed SNPs
can be almost the same as the power to detect association
with tag SNPs, and sometimes even better. However, this
study has several limitations. Zhai et al. [16] did not use
haplotype based methods, which can be more powerful
than methods based on individual marker when the dis-
ease susceptibility SNP is not included in the set of SNPs
used for mapping. The number of tag SNPs is usually
much smaller than the number of all SNPs, and the tag
SNPs have a much sparse map, which can be favorable for
haplotype analysis. This was clearly shown in the power
comparison of Zhang et al. [12,13]. Also, the highest
power occurred when the markers and the disease gene
had similar allele frequencies [17,18]. However, it is very
difficult to know the disease allele frequency in advance.
Thus, the threshold that should be used to select SNP
markers is problematic. Zhang et al. [18] studied power
using tag SNPs identified by haplotype diversity and
found that tag SNPs may not be efficient when the allele
frequency at the marker locus is much different from the
allele frequency at the disease locus. Other studies have
investigated the power issue theoretically, which may not
account for the complexities and heterogeneities in LD
mapping of disease genes, and thus their conclusions can-
not be readily extended to comprehensive haplotype-
based methods [6,10,19]. Furthermore, most studies
involving assessment of such power loss with tag SNPs
have focused on qualitative traits using either simulations
or real data sets [6,12,13,15,16]. The exception is Zhang et
al. [18], who studied quantitative traits. However, they
did not consider the analysis based on haplotypes. In this
paper, we assess the loss of power to detect quantitative
trait loci using tag SNPs through extensive simulations.
One major difference between this study and previous
studies is the use of haplotypes to study quantitative traits.

Methods
The coalescent with recombination
To carry out our study, we first simulated a large number
of haplotypes consisting of a large number of consecutive
SNPs across a genomic region. The simulation procedure
and corresponding parameters are similar to simulations
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conducted in our previous studies [12,13]. Specifically, we
used the coalescent process with recombination [20-22]
to construct haplotype populations. The genealogies of
haplotypes were generated with a population recombina-
tion rate r over the region of interest, and they are denoted
by [0, 1] for easy presentation. Once the ancestral relation-
ship between haplotypes has been simulated, mutations
are added onto the genealogies to generate SNPs with a
population mutation rate θ according to the infinite-
many-site mutation model. The infinite-many-site muta-
tion model assumes that mutations occur uniformly in [0,
1] and that a new mutation creates a new SNP that does
not already exist in the population – i.e., recurrent muta-
tions are not allowed.

It is well known that recombination hot and cold spots
can give rise to discrete haplotype block-like structure
[23,24]. Studies from both empirical data and simula-
tions also suggested that haplotype blocks may be created
due to genetic drift [25,26]. To accommodate such fea-
tures of human evolution in our simulations, we
employed four different population models to generate
haplotypes. For the first population model, we assumed a
constant population size with a uniform recombination
rate. We set both r and θ to 200, which correspond to sim-
ulating a genomic region of about 200 kb [27]. We simu-
lated the second haplotype population with recent
population expansion but with the assumption of a uni-
formly distributed recombination rate. Again, both the
recombination rate and the mutation rate were set at 200.
We assumed that the population was constant at size
10,000 for a very long time and that it began growing
exponentially until it reached the present population size
of 107 from 1,500 generations ago. We also generated two
haplotype populations with varied schemes of recombi-
nation hot spots. Both the mutation rate and the back-
ground recombination rate were set at 200 in this
situation. For the third population model, two regions
[0.20, 0.30] and [0.70, 0.80] were selected, with recombi-
nation rates 15 times higher than the background recom-
bination rate. For the fourth population, one region [0.40,
0.60] was selected, with a recombination rate 15 times
higher than the background recombination rate. The first
two population models have been used in previous stud-
ies [12,13,16]. As we will describe below, the simulated
disease susceptibility loci were positioned within the
region [0.40, 0.60]. The two additional populations allow
us to thoroughly assess the effect of recombination hot
spots on the power loss because the disease susceptibility
gene is not in recombination hot spot regions for the third
population, while it is in a recombination hot spot region
for the fourth population. For simplicity, we refer to these
population models as P1, P2, P3, and P4, respectively, in
the rest of this paper.

We simulated a quantitative trait locus with the frequency
of the allele corresponding to the high trait value in a des-
ignated range. Here, we considered three different scenar-
ios corresponding to rare, moderate, and common alleles
for the high trait values, respectively. For each set of hap-
lotypes, we chose a marker locus as the candidate trait
locus if it satisfied two conditions: (1) the frequency of the
minor allele is in a designated range, and (2) the position
of the trait locus is between 0.40 and 0.60. The first con-
dition restricts the variant allele frequency, and the second
condition ensures that the candidate trait locus is approx-
imately in the middle of the region of interest. If no such
marker loci exist, this data set was discarded. If several
marker loci satisfy these conditions in a data set, the
marker locus closest to 0.50 was chosen as the quantita-
tive trait locus. Once the candidate trait locus has been
determined, the marker loci were selected sequentially
from the left to the right along the chromosome based on
the following conditions. (1) The frequency of the minor
allele is at least 5%. (2) The distance between any two
adjacent marker loci, including the candidate trait locus,
is not less than a threshold. In this study, we set the
threshold at 0.005. Because the length of the simulated
genomic region is about 200 kb, the distance between two
adjacent markers is at least 200*0.005 = 1 kb, resulting in
at most 200 markers. In addition, the trait locus is not one
of the marker loci used in mapping and is away at least
0.005 from the closest marker locus. The haplotypes at
these marker loci and the trait locus were retained for fur-
ther analysis.

The quantitative trait models
Based on the set of haplotypes generated above and a
given quantitative trait model, we generated parents-off-
spring samples or population samples using either ran-
dom sampling or extremal sampling. We considered the
following widely used quantitative trait model at the can-
didate trait locus:

Qi = µ + aAi + dDi + εi,  (1)

where Qi is the trait value; Ai and Di are the additive and
dominant genotypic scores, respectively; and εi is a nor-
mal random variable with mean 0 and variance 1 and is
independent of the genotype.Ai takes the values 1, 0, and
-1, and Di takes the values 0, 1, and 0 for genotypes MM,
Mm and mm, respectively, in which M is the allele corre-
sponding to the high trait value. The additive genetic var-

iance attributable to the locus is ,

the dominant genetic variance is , and the

total genetic variance is , where p is the fre-
quency of the allele corresponding to the high trait value
at the trait locus and q = 1 - p. The broad-sense heritability

σa pq a p q d2 22= − −[ ( ) ]

σd pqd2 22= ( )

σ σ σG a d
2 2 2= +
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attributable to the locus is computed by

[28,29].

Here, we only considered the additive model (d = 0). For
a given frequency of the allele corresponding to high trait
value p, and the broad-sense heritability H2, we calculated
the value of a. In this paper, we let µ = 0 and H2 = 20%.
For random sampling, we generated 600 family samples
consisting of unrelated individuals with their parents and
300 population samples of unrelated individuals based
on the given quantitative trait model. For the family sam-
ples in extremal sampling, we chose 125 individuals with
trait values in the top 20% of the population distribution
of the trait values together with their parents and 125 indi-
viduals with trait values in the lower 20% of the popula-
tion distribution of the trait values together with their
parents. For the population samples in the extremal sam-
pling, we selected 75 individuals with trait values in the
upper 20% as cases and 75 individuals with trait values in
the lower 20% as controls. We found that the power using
these sample sizes for most methods is in an appropriate
range under all situations considered, and thus meaning-
ful comparisons can be made.

Algorithms for tag SNP selection and random SNP 
selection
Many methods have recently been developed for haplo-
type block partitioning and tag SNP selection. Here, we
mainly focus on two methods. The first method is block-
dependent, in which a dynamic programming algorithm
is used to find the optimal block partition to minimize the
total number of tag SNPs [5,12]. We followed commonly
used definitions of blocks and tag SNPs [4,5] in our sim-
ulation. We defined blocks as in Patil et al. [4], where at
least α percentage of observed or inferred haplotypes
must be common haplotypes. Common haplotypes are
those with frequencies greater than a threshold β. We
defined tag SNPs within a block as the minimal set of
SNPs that can distinguish α percentage of all observed or
inferred haplotypes. We fixed α and β as 0.80 and 0.05,
respectively. The second method is a block-free method
based on LD measure r2 [6]. Because the statistical power
of association studies is proportional to the value of r2

[30], this method has become popular in recent studies.
Here, for any given subset of SNPs, all pair-wise r2 values
between the SNPs in this subset and the SNPs not in this
subset were calculated. For a given SNP not in the subset,
we took the maximum value of r2 as its individual predic-
tion power. The minimum value over all of the SNPs was
taken as the overall prediction power. The minimum set
of SNPs with prediction power exceeding a pre-specified
threshold, γ, was considered as a set of tag SNPs. We
adapted the greedy algorithm developed by Carlson et al.
[6] to select the set of tag SNPs. For comparison, we

choose an appropriate γ that enables the same number of
tag SNPs for two different algorithms.

For power comparison, Zhang et al. [12,13] used a set of
SNPs chosen uniformly at random among all SNPs. Zhai
et al. [16] argued that researchers would prefer a set of
evenly spaced SNPs with minor allele frequencies greater
than a threshold if no prior knowledge of these SNPs was
available in real studies, and they conducted the power
comparison of association studies between them and tag
SNPs. Here, we chose the same number of SNPs using
both methods. The threshold for the minor allele fre-
quency, t, was set to 0.05, 0.10, 0.15, and 0.20, respec-
tively.

Tests of association of quantitative trait locus (QTL) by 
linkage disequilibrium
Linkage disequilibrium mapping studies for QTL typically
use either family samples or unrelated individuals. When
family data are used, the transmission/disequilibrium test
(TDT) for quantitative traits can be used to test for linkage
or association [32-35]. In this study, we assumed that we
had n families with two parents and one offspring in each
family, and we used the statistic TDTQ [33,34]. Many
methods have been developed for mapping quantitative
trait loci using unrelated population individuals
[28,29,36]. Here, we employed the regression method to
test whether there is any association between a marker
locus and a QTL. Suppose we have the genotypes and the
trait value of n individuals. The test of association can be
implemented based on the standard linear regression
model, as in equation (1). The null hypothesis is a = d = 0.

The QTL mapping using haplotype data is of great interest.
Thus, we also implemented the haplotype-based method
developed by Dudbridge [37] and Zaykin et al. [38]. The
first method is an extension of classical TDT, and the sec-
ond is based on regression analysis. Both methods esti-
mate haplotypes and their frequencies using the EM
algorithm and can account for the uncertainty of haplo-
type frequencies.

Results
We generated 20 sets of 2,000 haplotypes using the coa-
lescent program with population models from P1 to P4,
respectively. The QTL and the marker loci used for map-
ping were determined by the approach described in the
Methods section. In summary, the number of markers
used for mapping varies from 131 to 156. For the rare
QTL, the frequency of the allele corresponding to high
trait values varies from 0.040 to 0.060. For the moderate
QTL, the frequency of the allele corresponding to high
trait values varies from 0.125 to 0.175. For the common
QTL, The frequency of the allele corresponding to high

H G G a d a d
2 2 2 2 2 2 21 1= + = + + +σ σ σ σ σ σ/( ) ( )/( )
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trait values varies from 0.270 to 0.329. The position of the
QTL varies from 0.443 to 0.583.

These sets of haplotypes were then used to construct sam-
ples with quantitative traits. For each set of haplotypes, we
generated 50 replicates of parent-offspring samples or
population samples using either the random sampling
scheme or the extremal sampling scheme described in the
Methods section. We thus had a total of 1,000 replicates
for each sampling scheme and each population. For each
set of family samples, 20 pairs of parents (i.e., 80 haplo-
types) were randomly selected to obtain the haplotype
block partitions and tag SNPs. For each set of population
samples, we chose 40 individuals (i.e., 80 haplotypes) as
tagged samples. Several studies have shown that such a
number of individuals can give similar block partitions
and tag SNPs as a larger number of samples [12,15,26].
We calculated the test statistics based on individual SNPs
and two-locus haplotypes, and we adjusted the p-values
over all the markers using the Bonferroni correction. Table
1 summarizes the test methods compared in this study.
The power of each test was conducted using several differ-
ent kinds of data with type I error of 0.05: (1) all the SNPs,
(2) the tag SNPs, (3) the same number of evenly spaced
SNPs with minor allele frequency greater than a thresh-
old, and (4) the same number of randomly chosen SNPs
as the number of tag SNPs.

Power comparisons
Here, we describe the results from our power study using
the above methods with a significance level of 0.05. On
average, 36, 44, 43, and 42 tag SNPs were selected for pop-
ulation models from P1 to P4, respectively. As expected,
more tag SNPs were needed with the inclusion of the
recombination hot spots and the population expansion.
For the moderate QTL, the power results for the different
testing methods and populations with the random sam-
pling scheme and the extremal sampling scheme are
shown in Figure 1 and Figure 2, respectively. Several gen-
eral conclusions emerge from these figures. First, except
for the degree of the power differences among the tests,

Figure 1 and Figure 2 show very similar patterns, indicat-
ing that the conclusions drawn based on the random sam-
pling scheme can be generally applicable to the situation
involving the extremal sampling scheme. Second, the tests
based on family samples and population samples also
have similar power patterns. Third, although the power to
detect the QTL based on two-locus haplotypes is generally
higher than the power based on marker-by-marker analy-
sis because of the exclusion of the QTL in the analysis.
Such a gain in power depends not only upon population
models but also on the methods for tag SNPs selection.
Fourth, population models used in the simulation sub-
stantially affect the power patterns using the tag SNPs, the
evenly spaced SNPs, and the randomly selected SNPs.
Population models also affect the performance of tag
SNPs. Because the power for detecting association is gen-
erally very low in population P4, we will only compare
our results in the first three populations (P1, P2, and P3).

For individual marker analysis, there are no clear patterns
to indicate which approach for tag SNP selection performs
the best. In population P1, the tag SNPs identified using
r2 perform the best. In population P2, the tag SNPs identi-
fied using haplotype diversity outperform the tag SNPs
identified using other methods. In population P3, the
maximum power among the evenly spaced SNPs is the
highest. These differences can be quite significant. The
findings in this study are consistent with previous studies
[16,18].

We emphasize that the idea behind haplotype tagging is
to account for most haplotype diversity using the smallest
number of tag SNPs and then to do haplotype-based anal-
ysis, not individual marker analysis. Indeed, haplotype-
based analysis performs similarly in high-LD regions and
outperforms in low-LD regions compared with individual
marker analysis. Note that the QTL is excluded from our
analysis. If the QTL is one of the marker loci analyzed,
individual marker analysis can be more powerful than
haplotype analysis. We envision that the chance of having
the QTL in the marker set is low, and thus we suggest

Table 1: Summary of methods used for power comparison.

Test Methods Description

TDT-R-SNP Random sampling, marker-by-marker analysis for family samples
TDT-R-HAP Random sampling, two-locus haplotype analysis for family samples
POP-R-SNP Random sampling, marker-by-marker analysis for population samples
POP-R-HAP Random sampling, two-locus haplotype analysis for population samples
TDT-E-SNP Extremal sampling, marker-by-marker analysis for family samples
TDT-E-HAP Extremal sampling, two-locus haplotype analysis for family samples
POP-E-SNP Extremal sampling, marker-by-marker analysis for population samples
POP-E-HAP Extremal sampling, two-locus haplotype analysis for population samples
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The power using SNPs with a random sampling scheme for different population modelsFigure 1
The power using SNPs with a random sampling scheme for different population models. The power is obtained using single-
SNP and two-locus haplotype data based on 1,000 simulations with a moderate QTL. In each bin, the figure shows the power 
based on marker-by-marker analysis and two-locus haplotype analysis (from left to right). Between bins, it shows the power 
using (from left to right): (1) all SNPs; (2) the tag SNPs identified using the haplotype diversity [4]; (3) the tag SNPs identified 
using r2 [6]; (4) the evenly spaced SNPs with minor allele frequencies greater than 0.05; (5) the evenly spaced SNPs with minor 
allele frequencies greater than 0.10; (6) the evenly spaced SNPs with minor allele frequencies greater than 0.15; (7) the evenly 
spaced SNPs with minor allele frequencies greater than 0.05; and (8) the randomly selected SNPs. In each graph, the method 
having the highest power based on two-locus haplotype analysis is indicated with the "+" sign. The methods having power sig-
nificantly lower than the highest one (one-sided chi-square test with 0.05 type I error rate) are indicated with the "*" sign.
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using haplotype analysis in real studies. Next, we concen-
trate on haplotype analysis. In population P1, with high
LD, the performances of the three methods are similar. In
population P2, with medium LD, the tag SNPs identified
based on haplotype diversity perform significantly better

than those selected using the other two approaches. In
population P3, with regions of low LD and regions of high
LD, the tag SNPs identified based on haplotype diversity
perform similarly to the evenly spaced SNPs and perform
significantly better than the tag SNPs selected based on r2.

The power using SNPs with an extremal sampling scheme for different population modelsFigure 2
The power using SNPs with an extremal sampling scheme for different population models. The power is obtained using single-
SNP and two-locus haplotype data based on 1,000 simulations with a moderate QTL. The bars in each bin and the symbols ("+" 
and "*") have the same meaning with those in Figure 1.
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In all but one case, the tag SNPs identified based on hap-
lotype diversity perform the best or are not significantly
different from the best-performing ones.

For rare and common QTLs, the power patterns for ran-
dom or extremal sampling, population or family sam-
pling are also similar. Therefore, we only present the

The power using SNPs with random sampling of population samples for different population modelsFigure 3
The power using SNPs with random sampling of population samples for different population models. The power is obtained 
using single-SNP and two-locus haplotype data based on 1,000 simulations with a rare and a common QTL, respectively. The 
bars in each bin and the symbols ("+" and "*") have the same meaning with those in Figure 1.
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The histogram of the minor allele frequencies for those selected SNPs for population models P1 and P2 with random sampling of family samples and moderate QTLsFigure 4
The histogram of the minor allele frequencies for those selected SNPs for population models P1 and P2 with random sampling 
of family samples and moderate QTLs. In each column, (a) represents all SNPs (b) the tag SNPs identified using the haplotype 
diversity [4], (c) the tag SNPs identified using r2 [6], and (d) the evenly spaced SNPs with minor allele frequencies greater than 
0.05, respectively.
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results based on random sampling of population samples
in Figure 3. For rare QTLs and individual marker analysis,
the tag SNPs identified based on haplotype diversity per-
form poorly and have smaller power even than the ran-
domly selected SNPs in populations P1, P2, and P3. This
is expected because the method based on haplotype diver-
sity tends to select more common SNPs, while the rare
SNPs have more power to detect the QTL at this situation.
The tag SNPs selected based on r2 have the highest power
in populations P1 and P2 and have power comparable
with the evenly spaced SNPs in population P3. The evenly
spaced SNPs, with minor allele frequencies close to the
frequency of the high-risk allele at QTLs, have the highest
power in population P3 and have power comparable with
the tag SNPs selected based on r2 in populations P1 and
P2. However, the evenly spaced SNPs with minor allele
frequencies greater than 0.15 generally perform poorly
and have the least power in all populations.

For common QTLs and individual marker analysis, the
performances of the three methods are similar in popula-
tion P1. The tag SNPs identified based on haplotype diver-
sity performs significantly better than the other two
approaches in population P2. In population P3, the tag
SNPs identified based on haplotype diversity perform
similarly to the evenly spaced SNPs and significantly bet-
ter than the tag SNPs selected based on r2.

For rare QTLs and two-locus haplotype analysis, the tag
SNPs identified based on haplotype diversity are signifi-
cantly less powerful than the tag SNPs selected based on
r2 or the evenly spaced SNPs in populations P1 and P2 (a
one-sided chi-square test with a 0.05 type I error rate) but
have power comparable to the evenly spaced SNPs in pop-
ulation P3. The tag SNPs selected based on r2 perform sim-
ilarly to the evenly spaced SNPs in populations P1 and P2
but are significantly less powerful than the other two
methods in population P3. For common QTLs and two-
locus haplotype analysis, the power of tag SNPs identified
based on haplotype diversity is the highest and is signifi-
cantly greater than the power of the tag SNPs identified
based on r2 and the evenly spaced SNPs in populations P1,
P2, and P3. Again, the tag SNPs identified based on r2 have
less power than the evenly spaced SNPs in populations
P1, P2, and P3.

These power patterns can arise for several possible rea-
sons. First, SNPs close to the QTL generally have more
power. Therefore, one method will be more powerful than
the other methods if it can choose more SNPs around the
QTL than the other method methods. As an example, the
QTL was positioned far away from two designated recom-
bination hot spot regions for population model P3. The
methods based on the haplotype diversity [4] and r2 [6]
select more SNPs in two recombination regions but fewer

SNPs around the QTL than the number of evenly spaced
SNPs, resulting in less power to detect the QTL. In con-
trast, more tag SNPs were selected around the QTL for
population model P4, and in this situation the power to
detect the QTL using the tag SNPs is higher than the power
when the same number of evenly spaced SNPs is used.
Second, it has been suggested that both the allele frequen-
cies of marker loci and the QTL affect the power in associ-
ation studies. The power generally achieves its maximum
when the minor allele frequency of SNPs is close to the
frequency of the disease allele for individual marker anal-
ysis [17]. This is very clear when we compare the power of
individual marker analysis based on rare QTLs and com-
mon QTLs. Here, we recorded the minor allele frequency
in each of 1,000 replicates.

Figure 4 shows the histogram of the minor allele frequen-
cies for those selected SNPs for population models P1 and
P2 with random sampling of family samples and moder-
ate QTLs. It can be seen that the distributions of minor
allele frequencies for the tag SNPs identified by r2 and the
evenly-spaced SNPs with minor allele frequencies greater
than 0.05 are similar in Figure 4, and that they have a
shape similar to the distribution of minor allele frequen-
cies for all of the SNPs. On the other hand, the distribu-
tion of minor allele frequencies for the tag SNPs identified
using haplotype diversity is different from others. This tag
SNP selection method tends to choose more common
SNPs in order to characterize the common haplotypes
using as few tag SNPs as possible within each block.

Discussion
Genome-wide association studies based on linkage dise-
quilibrium patterns play a central role in localizing
genetic variation responsible for common human dis-
eases and traits. Recently, several studies have revealed a
block-like structure across the human genome. Under-
standing this block-like structure is essential for the cur-
rent effort. It is important to develop methods for locating
the haplotype block structure and the corresponding tag
SNPs as well as to understand the usefulness and limita-
tions of tag SNPs in association studies for QTL mapping.
In this paper, we used Monte Carlo simulations to assess
the power loss when the tag SNPs instead of all of the
SNPs are used to detect the QTL in association studies. We
also compared the power using tag SNPs and the power
using the same number of evenly-spaced SNPs and ran-
domly chosen SNPs. This is one of few studies to assess
the power using tag SNPs to detect the QTL. Our results
confirmed some conclusions from previous studies with
qualitative traits and produced some novel findings. We
showed that there are no clear winners for the three tag
SNP selection methods studied in this paper based on
individual marker analysis. For two-locus haplotype anal-
ysis and QTLs with moderate to high minor allele fre-
Page 10 of 13
(page number not for citation purposes)



BMC Genetics 2005, 6:51 http://www.biomedcentral.com/1471-2156/6/51
quency, the tag SNPs identified based on haplotype
diversity are comparable to the best approach in almost
all of the situations examined. However, the power of the
tag SNPs selected based on r2 can be significantly lower
than the power of the best methods. On the other hand,
the evenly spaced SNPs perform quite well in most situa-
tions if we know the allele frequency of the QTL, but they
can express relatively low power when the allele of the
QTL is incorrectly specified. For QTLs with low minor
allele frequency, the power using tag SNPs identified
based on haplotype diversity can be much lower than the
power using the other two approaches.

Several possible improvements in future studies can be
carried out using more sophisticated simulation strate-
gies. In this paper, we used the coalescent process to sim-
ulate the haplotypes because the coalescent theory
captures the essentials of the population genetic data. It
also allows us to explore the effects of some key factors,
such as the mutation rate, the recombination rate, and the
population expansion. In addition to the populations
simulated with constant population size and uniformly
distributed mutation and recombination rates, we also
generated haplotypes with the inclusion of recombina-
tion hot spots and rapid population expansion. Our
results show that the population history has a substantial
effect on the usage of tag SNPs in association studies.
However, simulations based on the coalescent model may
fail to capture some features of human evolution as found
in real data sets. Therefore, simulations based on real data
sets would be desirable. In this paper, we considered QTLs
with low, moderate, and high minor allele frequencies
and it was assumed that they are positioned at the center
of region of interest. However, this information generally
remains unknown in real studies. A possible approach
would be to consider each SNP as a potential QTL, then
compare the average power for all the SNPs or the average
power based on different ranges of minor allele frequen-
cies. In this paper, the samples used for tag SNP selection
are a subset of the samples used to detect QTL. This strat-
egy is different from the HapMap project, in which tag
SNPs are identified by a set of samples and then can be
used in virtually any studies based on the same popula-
tion. However, it is far from obvious that tag SNPs chosen
in this way will be the best ones for mapping genes in
another sample, and there is no assessment of such conse-
quences. Given that the Human HapMap project is nearly
complete and that many researchers have attempted to
use tag SNPs for their disease-mapping studies, it is clearly
important to develop sophisticated simulation plans to
evaluate the effectiveness of such a design.

In this paper, we presented our simulation results based
on relatively high broad-sense heritability (H2 = 20%). It
maybe is too high for many QTLs. We also simulated

QTLs with broad-sense heritability H2 = 5%. In order that
the power is relatively high (about 0.70–0.80 using all the
SNPs) for meaningful comparisons, a larger sample size is
required. Detailed results are provided as supporting
materials (Supplemental Figure 1 and 2 [see additional
file 1]). The power patterns are similar to those presented
in Figure 1 to 4. In our simulations, we used the simple
QTL model (a single main QTL with the additive effect)
and the simple statistical methods for detecting associa-
tions (e.g., TDT and the regression analysis). Nonetheless,
our simulations are still valid for many QTLs as long as
each of them has the detectable marginal effect. New sim-
ulation designs are needed to investigate the effectiveness
of tag SNPs in detecting those QTLs with only interactions
but no marginal effects. In this study, we also constrained
our simulations on a homologous population. The pres-
ence of sub-population structures in studied samples can
greatly complicate the analysis, not only because it can
result false association but also the blocks and tag SNPs
depend on the specific populations [39,40]. A possible
way around this problem is to first use unrelated SNPs to
divide a general population into several homogeneous
populations [41], and then obtain the haplotype block
partitions and the tag SNPs and conduct the association
analysis for each population.

In this study, we concentrated on two tag SNP selection
methods. They can represent two distinct groups of meth-
ods. The first method is block-dependent and is based on
haplotype diversity [4]. The second method is block-free
and is solely based on pair-wise LD measure r2 [6]. Our
results have important implications for association stud-
ies in that we found that these two methods perform dif-
ferently for different population models. There are also
many other methods for tag SNP selection, but only a few
of them have been evaluated in previous studies. In addi-
tion, many factors, including population structure and
history [39,40], marker allele frequency [12,42], marker
density [12,40,42], and number of samples [13,15,26],
can affect the selection of tag SNPs and their performances
in association studies. It still remains unclear which
method should be used in tag SNP selection for associa-
tion studies, but we believe no method will perform best
under all situations. Thus, it is important to determine
which method is better under certain conditions in future
studies.

Finally, we would like to emphasize that any method for
tag SNP selection must be combined with existing biolog-
ical knowledge. For example, if two adjacent SNPs are in
complete LD with similar minor allele frequencies, the
methods based on pair-wise LD may only choose one of
them as a tag SNP. If both of them have been suggested by
the previous biological knowledge to be important, there
is no reason both of them should not be included in the
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set of tag SNPs. The best way may be to combine several
methods to come up with a "consensus set" of tag SNPs
with biologically important SNPs.

Conclusion
In this paper, we studied the power of tag SNPs to detect
the QTL using extensive Monte Carlo simulations. Our
study confirmed some conclusions from previous studies
with qualitative traits and produced some novel findings,
which have important implications in designing optimal
association studies using tag SNPs. First, the use of tag
SNPs can significantly reduces the genotyping effort with-
out much loss of power in most situations. Second, two-
locus haplotype analysis using tag SNPs are more power-
ful than those using the same number of randomly
selected SNPs. Third, among several methods for tag SNP
selection compared in this paper, there is no single
method that outperforms the others in all situations.
Fourth, the population structure and history and the allele
frequency at the disease locus have substantial effects on
the usage of tag SNPs in association studies. The effect of
other factors, such as marker allele frequency and marker
density, on the power of tag SNP selected by many other
methods still remains unclear and needs further investiga-
tion.

Authors' contributions
Kui Zhang participated in the design of the simulation
studies, conducted the simulations, performed the statis-
tical analysis, interoperated the results, and drafted the
paper. Fengzhu Sun participated in the design of the sim-
ulation studies, interpreted the results, and helped to draft
the paper. All authors read and approved the final manu-
script.

Additional material

Acknowledgements
The work is partially supported by NIH grant R01ES09912 (Kui Zhang) and 
NIH grant P50 HG 002790 (Fengzhu Sun). The authors wish to thank Peter 
Calabrese for providing his program to simulate the haplotype data with 
recombination hot spots. The authors also thank two anonymous review-
ers for their thoughtful comments.

References
1. Daly MJ, Rioux JD, Schaffner SF, Hudson TJ, Lander ES: High-resolu-

tion haplotype structure in the human genome.  Nat Genet
2001, 29:229-232.

2. Dawson E, Abecasis GR, Bumpstead S, Chen Y, Hunt S, Beare DM,
Pabilal J, Dibling T, Tinsley E, Kirby S, Carter D, Papaspyidonos M, Liv-
ingstone S, Ganske R, Lõhmussaar E, Zernant J, Tõnisson N, Remm
M, Mägi R, Puurand T, Vilo J, Kurg A, Rice K, Deloukas P, Mott R, Met-
spalu A, Bentley DR, Cardon LR, Dunham I: A first-generation
linkage disequilibrium map of human chromosome 22.
Nature 2002, 418:544-548.

3. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B,
Higgins J, DeFelice M, Lochner A, Faggart M, Liu-Cordero SN, Rotimi
C, Adeyemo A, Cooper R, Ward R, Lander ES, Altshuler D: The
structure of haplotype blocks in the human genome.  Science
2002, 296:2225-2229.

4. Patil N, Berno AJ, Hinds DA, Barrett WA, Doshi JM, Hacker CR,
Kautzer CR, Lee DH, Marjoribanks C, McDonough DP, Nguyen BTN,
Norris MC, Sheehan JB, Shen N, Stern D, Stokowski RP, Thomas DJ,
Trulson MO, Vyas KR, Frazer KA, Fodor SPA, Cox DR: Blocks of
limited haplotype diversity revealed by high-resolution scan-
ning of human chromosome 21.  Science 2001, 294:1719-1723.

5. Zhang K, Deng M, Chen T, Waterman MS, Sun F: A dynamic pro-
gramming algorithm for haplotype block partitioning.  Proc
Natl Acad Sci U S A 2002, 99:7335-7339.

6. Carlson CS, Eberle MA, Rieder MJ, Yi Q, Kruglyak L, Nickerson DA:
Selecting a maximally informative set of single nucleotide
polymorphisms for association analyses using linkage dise-
quilibrium.  Am J Hum Genet 2004, 74:106-120.

7. Halldorsson BV, Bafna V, Lippert R, Schwartz R, De La Vega FM, Clark
AG, Istrail S: Optimal haplotype block-free selection of tagging
SNPs for genome-wide association studies.  Genome Res 2004,
14:1633-1640.

8. Meng Z, Zaykin DV, Xu C, Wagner M, Ehm MG: Selection of
genetic markers for association analyses using linkage dise-
quilibrium and haplotypes.  Am J Hum Genet 2003, 73:115-130.

9. Chapman JM, Cooper JD, Todd JA, Clayton DG: Detecting disease
associations due to linkage disequilibrium using haplotype
tags: a class of tests and the determinants of statistical
power.  Hum Hered 2003, 56:18-31.

10. Cousin E, Genin E, Macce S, Ricard S, Chansac C, Del Zompo M,
Deleuze JF: Association studies candidate genes: strategies to
select SNPs to be tested.  Hum Hered 2003, 56:151-159.

11. Hu X, Schrodi SJ, Ross DA, Cargill M: Selecting tagging SNPs for
association studies using power calculations from genotype
data.  Hum Hered 2004, 57:156-170.

12. Zhang K, Qin ZS, Liu JA, Chen T, Waterman MS, Sun F: Haplotype
block partitioning and tag SNP selection using genotype data
and their applications to association studies.  Genome Res 2004,
14:908-916.

13. Zhang K, Calabrese P, Nordborg M, Sun F: Haplotype structure
and its applications to association studies: power and study
design.  Am J Hum Genet 2002, 71:1386-1394.

14. Johnson GCL, Esposito L, Barratt BJ, Smith AN, Heward J, Genova
GD, Ueda H, Cordell HJ, Eaves IA, Dudbridge F, Twells RCJ, Payne F,
Hughes W, Nutland S, Stevens H, Phillipa C, Tuomilehto-Wolf E,
Tuomilehto J, Gough SCL, Clayton DG, Todd JA: Haplotype tag-
ging for the identification of common disease genes.  Nat
Genet 2001, 29:233-237.

15. Thompson D, Stram D, Goldgar D, Witte JS: Haplotype tagging
single nucleotide polymorphisms and association studies.
Hum Hered 2003, 56:48-55.

16. Zhai W, Todd MJ, Nielsen R: Is haplotype block identification
useful for association mapping studies?  Genet Epidemiol 2004,
27:80-83.

17. Kaplan N, Morris R: Issues concerning association studies for
fine mapping a susceptibility gene for a complex disease.
Genet Epidemiol 2001, 20:432-457.

18. Zhang W, Collins A, Morton N: Does haplotype diversity predict
power for association mapping of disease susceptibility?  Hum
Genet 2004, 115:157-164.

19. Weale ME, Depondt C, Macdonald SJ, Smith A, Lai PS, Shorvon SD,
Wood NW, Goldstein DB: Selection and evaluation of tagging
SNPs in the neuronal-sodium-channel gene SCN1A: Implica-
tions for linkage-disequilibrium gene mapping.  Am J Hum
Genet 2003, 73:551-565.

Additional file 1
this Microsoft Word file contains two supplemental figures (supplemental 
figure 1 and 2) and their legends. These figures present the power results 
based on the heritability of 5%.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2156-6-51-S1.doc]
Page 12 of 13
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2156-6-51-S1.doc
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11586305
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11586305
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12110843
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12110843
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12029063
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12029063
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11721056
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11721056
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11721056
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12032283
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12032283
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14681826
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14681826
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14681826
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15289481
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15289481
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12796855
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12796855
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12796855
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14614235
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14614235
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14614235
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15031617
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15031617
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15297809
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15297809
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15297809
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15078859
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15078859
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15078859
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12439824
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12439824
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12439824
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11586306
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11586306
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14614238
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14614238
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15185406
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15185406
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11319784
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11319784
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15221450
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15221450
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12900796
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12900796
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12900796


BMC Genetics 2005, 6:51 http://www.biomedcentral.com/1471-2156/6/51
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

20. Hudson RR: Properties of a neutral-allele model with inter-
genic recombination.  Theor Popul Biol 1983, 23:183-201.

21. Kaplan NL, Hudson RR: The use of sample genealogies for stud-
ying a selectively neutral m-loci model with recombination.
Theor Popul Biol 1985, 28:382-396.

22. Griffiths RC, Marjoram P: An ancestral recombination graph.  In
Progress in Population Genetics and Human Evolution Edited by: Donnelly
P, Tavaré S. Springer-Verlag, New York; 1997. 

23. Jeffreys AJ, Kauppi L, Neumann R: Intensely punctuate meiotic
recombination in the class II region of the major histocom-
patibility complex.  Nat Genet 2001, 29:217-222.

24. Schneider JA, Peto TE, Boone RA, Boyce AJ, Clegg JB: Direct meas-
urement of the male recombination fraction in the human β-
globin hot spot.  Hum Mol Genet 2002, 11:207-215.

25. Phillips MS, Lawrence R, Sachidanandam R, Morris AP, Balding DJ,
Donaldson MA, Studebaker JF, Ankener WM, Alfisi SV, Kuo FS,
Camisa AL, Pazorov V, Scott KE, Carey BJ, Faith J, Katari G, Bhatti
HA, Cyr JM, Derohannessian V, Elosua C, Forman AM, Grecco NM,
Hock CR, Kuebler JM, Lathrop JA, Mockler MA, Nachtman EP, Res-
tine SL, Varde SA, Hozza MJ, Gelfand CA, Broxholme J, Abecasis GR,
Boyce-Jacino MT, Cardon LR: Chromosome-wide distribution of
haplotype blocks and the role of recombination hot spots.
Nat Genet 2003, 33:382-387.

26. Wang N, Akey JM, Zhang K, Chakraborty K, Jin L: Distribution of
recombination crossovers and the origin of haplotype
blocks: the interplay of population history, recombination,
and mutation.  Am J Hum Genet 2002, 71:1227-1334.

27. Nordborg M, Tavaré S: Linkage disequilibrium: what history has
to tell us?  Trends Genet 2002, 18:83-90.

28. Fisher RA: The correlation between relatives on the supposi-
tion of Mendelian inheritance.  Trans Royal Soc Edinburgh 1918,
52:399-433.

29. Schork NJ, Nath SK, Fallin D, Chakravarti A: Linkage disequilib-
rium analysis of biallelic DNA markers, human quantitative
trait loci, and threshold-defined case and control subjects.
Am J Hum Genet 2000, 67:1208-1218.

30. Pritchard JK, Przeworski M: Linkage disequilibrium in humans:
models and data.  Am J Hum Genet 2001, 69:1-14.

31. Abecasis GR, Cardon LR, Cookson WOC: A general test of asso-
ciation for quantitative traits in nuclear families.  Am J Hum
Genet 2000, 66:279-292.

32. Monks SA, Kaplan NL: Removing the sampling restrictions
from family-based tests of association for a quantitative-trait
locus.  Am J Hum Genet 2000, 66:576-592.

33. Rabinowitz D: A transmission disequilibrium test for quantita-
tive trait loci.  Hum Hered 1997, 47:342-350.

34. Spielman RS, Ewens WJ: The TDT and other family based tests
for linkage disequilibrium and association.  Am J Hum Genet
1996, 59:983-9.

35. Sun FZ, Flanders WD, Yang QH, Zhao HY: Transmission/disequi-
librium tests for quantitative traits.  Ann Hum Genet 2000,
64:555-565.

36. Slatkin M: Disequilibrium mapping of a quantitative-trait locus
in an expanding population.  Am J Hum Genet 1999, 64:1764-72.

37. Dudbridge F: Pedigree disequilibrium tests for multilocus hap-
lotypes.  Genet Epidemiol 2003, 25:115-121.

38. Zaykin DV, Westfall PH, Young SS, Karnoub MA, Wagner MJ, Ehm
MG: Testing association of statistically inferred haplotypes
with discrete and continuous traits in samples of unrelated
individuals.  Hum Hered 2002, 53:79-91.

39. Ke XY, Durrant C, Morris AP, Hunt S, Bentley DR, Deloukas P, Car-
don LR: Efficiency and consistency of haplotype tagging of
dense SNP maps in multiple samples.  Hum Mol Genet 2004,
13:2557-2565.

40. Liu N, Sawyer SL, Mukherjee N, Pakstis AJ, Kidd JR, Kidd KK, Brooks
AJ, Zhao H: Haplotype block structures show significant vari-
ation among populations.  Genet Epidemiol 2004, 27:385-400.

41. Pritchard JK, Rosenberg NA: Use of unlinked genetic markers to
detect population stratification in association studies.  Am J
Hum Genet 1999, 65:220-228.

42. Schulze TG, Zhang K, Chen YS, Akula N, Sun FZ, Mcmahon FJ: Defin-
ing haplotype block and tag single-nucleotide polymor-
phisms in the human genome.  Hum Mol Genet 2004, 13:335-342.
Page 13 of 13
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6612631
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6612631
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4071443
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4071443
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11586303
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11586303
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11586303
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11823440
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11823440
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12590262
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12590262
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12384857
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12384857
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12384857
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11818140
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11818140
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11032785
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11032785
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11410837
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11410837
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10631157
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10631157
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10677318
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10677318
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10677318
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9391826
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9391826
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8900224
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8900224
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11281218
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11281218
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10330364
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10330364
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12916020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12916020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12037407
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12037407
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12037407
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15367493
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15367493
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15389924
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15389924
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10364535
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10364535
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14681300
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14681300
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14681300
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Methods
	The coalescent with recombination
	The quantitative trait models
	Algorithms for tag SNP selection and random SNP selection
	Tests of association of quantitative trait locus (QTL) by linkage disequilibrium

	Results
	Power comparisons

	Discussion
	Conclusion
	Authors' contributions
	Additional material
	Acknowledgements
	References

