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Abstract
Background: Manganese superoxide dismutase (MnSOD) plays a critical role in the detoxification
of mitochondrial reactive oxygen species constituting a major cellular defense mechanism against
agents that induce oxidative stress. The MnSOD promoter contains an activator protein-2 (AP-2)
binding site that modifies transcription of MnSOD. Mutations have been identified in the proximal
region of the promoter in human tumor cell lines. One of these mutations (-102C>T) has been
shown to change the binding pattern of AP-2 leading to a reduction in transcriptional activity. The
aim of our study was to develop a method to identify and determine the frequency of this (-
102C>T) polymorphism in human tissues.

Results: A new TaqMan allelic discrimination genotype method was successfully applied to
genomic DNA samples derived from blood, buccal swabs, snap frozen tissue and paraffin blocks.
The polymorphism was shown to be in Hardy-Weinberg Equilibrium in an evaluation of 130
Caucasians from Warsaw, Poland: 44 (33.8%) were heterozygous and 6 (4.6%) were homozygous
for -102T.

Conclusion: This report represents the first description of the MnSOD -102C>T polymorphism
in human subjects by a novel Taqman allelic discrimination assay. This method should enable
molecular epidemiological studies to evaluate possible associations of this polymorphism with
malignancies and other diseases related to reactive oxygen species.
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Background
Antioxidant enzymes such as superoxide dismutase
(SOD) protect cells from oxidative stress. Generation of
reactive oxygen species (ROS) has been implicated in the
etiology of a diversity of human diseases, including can-
cer[1], aging[2], atherosclerosis[3] and neurodegenerative
diseases[4,5]. Superoxide dismutase catalyzes the dismu-
tation of superoxide radical (O2

-) to H2O2 and O2. Three
distinct types of SODs have been identified in human
cells: 1) a homodimeric cytosolic CuZnSOD [6], 2) an
extracellular homotetrameric glycosylated SOD [7], and
3) a mitochondrial matrix homotetrameric manganese
superoxide dismutase (MnSOD) [8].

Numerous reports indicate a relative deficiency of super-
oxide dismutase catalytic activity, including mitochon-
drial MnSOD, in many types of solid tumors [9,10].
Interest in this relative deficiency of SOD activity has been
greatly increased by observations that over-expression of
SOD in tumor cells will suppress cell division in culture
and tumor growth in vivo[11]. In addition recent reports
have suggested a possible association between decreased
SOD activity and malignant phenotype[12]. While the
precise reasons for this relationship between tumor cell
growth rate and intracellular SOD activity are not known,
these findings support the general idea that decreased
expression of SOD may promote tumor growth. In fact, as
a result of these and other observations, MnSOD is con-
sidered a tumor suppressor gene[1].

Further evaluation of MnSOD suggests that it is critically
important in maintenance of mitochondrial function.
Mice with deficiency of this enzyme exhibit progressive
cardiomyopathy, neurodegeneration and perinatal
death[13]. These studies went on to confirm that trans-
genic mice that express human MnSOD in the mitochon-
dria are protected from environmental oxygen-induced
lung injury [14] and adriamycin-induced cardiac toxic-
ity[15]. In contrast, disruption of the other two SODs
yielded viable mice which were normal in non-stressful
conditions [16]. Thus the mitochondrial MnSOD repre-
sents a major cellular defense against oxidative stress.

Genetic polymorphism in the MnSOD mitochondrial tar-
geting sequence has been associated with risks to various
diseases including breast cancer[17,18], lung cancer[19],
cardiomyopathy[20] and Parkinson's disease[21].

A reduction of MnSOD activity has been shown to exist in
many types of human cancer cells when compared to nor-
mal cells [22]. A recent report has also demonstrated the
possible association between decreased SOD activity and
malignant phenotype[12]. A recent report demonstrated a
new mutation L60F, in exon 3 of the mature protein in the
Jurkat human T-cell leukemia-derived cell line that

reduced MnSOD [12]. Thus, it appears that reduced levels
of MnSOD activity in human cancer cells can be associ-
ated with coding region mutations that alter protein
sequence as well as promoter region mutations that alter
gene expression [23].

The human MnSOD gene is localized to chromosome 6
(6q25). The MnSOD promoter region is characterized by
a lack of TATA or CAAT boxes but the presence of a GC
rich region containing multiple SP-1 and AP-2 binding
sites [24]. Further work identified one cause for the
reduced expression of MnSOD in some human tumor
lines; the occurrence of three heterozygous mutations in
the upstream promoter region of this gene [25]. One of
these mutations in the MnSOD promoter sequence
(MnSOD -102C>T) has been shown to change the bind-
ing pattern of AP-2 leading to a reduction in transcrip-
tional activity. However the presence of this
polymorphism has not been reported in human tissue.

In this study we developed a TaqMan allelic discrimina-
tion assay to reliably genotype DNA from many tissues
(i.e. blood, buccal swabs, paraffin blocks, and snap frozen
tissue) for the -102C>T polymorphism in the MnSOD
promoter.

Results
We confirmed the presence of the -102C>T single nucle-
otide polymorphism in human subjects and submitted
the sequence variant to Genbank[26]. The genotyping
success rate with this technique in the Polish Caucasian
population was 85%. An evaluation of 130 DNA samples
successfully genotyped from Polish Caucasians not
known to have cancer, demonstrated 80 (61.5%) were
homozygous (-102C), 44 (33.8%) were heterozygous (-
102CT) and 6 (4.6%) were homozygous (-102TT). This
distribution is consistent with the Hardy-Weinberg Law.
The success rate with this technique in an additional
American control population was blood (95%), buccal
swabs (90%), snap frozen tissue (80%) and paraffin-
embedded samples (75%). The success rates were influ-
enced by DNA quality, DNA extraction technique, and the
ability to acquire enough DNA from the buccal swab.

Discussion
Reactive oxygen species in the form of superoxide radicals,
hydrogen peroxide, and hydroxy-radicals are formed dur-
ing incomplete reduction of molecular oxygen during
normal respirations. The production of reactive oxygen
species remains relatively stable during normal physio-
logic respirations. A significant increase in the production
of reactive oxygen species such as superoxide radicals can
be greatly increased as a result of metabolic disorders or
more commonly from exposure to toxins such as cigarette
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smoke, well-cooked meat, urban residency, and excessive
alcohol consumption.

Under normal physiologic conditions, superoxide radi-
cals are detoxified by superoxide dismutase. Among the
three SODs, MnSOD has been demonstrated to be the
only form that has been essential for survival of aerobic
life [27]. Inactivation of the MnSOD gene in E. coli signif-
icantly increased mutation frequency and cell death when
bacteria were grown under aerobic conditions [28]. This
has been further demonstrated in the evaluation in mam-
mals in which the inactivation of MnSOD gene has led to
detrimental effects. Polymorphisms of the human
MnSOD gene have been found in the promoter region, the
sequence coding for mature protein, and the mitochon-
drial targeting sequence. Initial evaluation of the five
prime flanking regions from human tumor cell lines indi-
cated that there were no major additions or deletions in
the five prime flanking regions of the human MnSOD
gene [29]. However, there were three mutations that were
identified in these tumor cell lines: a C to a T at the – 102
position; a C to a G at the – 38 and an insertion of an A in
11 straight Gs at the – 93 position in relation to the tran-
scription initiation site. The significance of these muta-
tions was felt to be important because this region includes
multiple binding sites for SP-1 proteins as well as AP-2
binding sites. Further evaluation of these mutations iden-
tified that the C to T change at the – 102 position effected
the overall transcription of the MnSOD gene [30]. This
change in transcription may result from an effect on the
AP-2 binding site. Although the -102 C to T mutation was
reported in human tumor cell lines [25], no evaluation
has been assessed in human subjects.

Evaluation of the -102C>T polymorphism is complicated
by difficulty in PCR because of the excessive GC rich
region in which this polymorphism exists. This location,
upstream from the transcription start site was extremely
difficult to identify through multiple PCR-restriction frag-
ment length polymorphism (RFLP) assays, which failed to
adequately digest at this polymorphism site, and led to
multiple false negative results. We found only the highest
quality DNA (i.e. blood) was able to be evaluated using a
PCR RFLP assay with only 50% genotyping success. This
failure to accurately reproduce the PCR-RFLP assay [31],
led us to the development of this TaqMan allelic discrim-
ination assay.

The TaqMan allelic discrimination assay provided results
that were confirmed by automated DNA sequencing and
blind repeat genotyping. Although we did not test it use
on DNA from multiple tissues from the same individual,
it was successful for DNA samples derived from buccal
swabs and paraffin blocks. It has significant advantages
over RFLP analysis, allele-specific amplification, allele-

specific hybridization, and oligo-nucleotide ligation assay
techniques. The reasons for this advantage come from the
reduction in labor intensive work up, the lack of need for
special handling of radioactive probes, and the ability to
modify this technique to evaluate multiple polymor-
phisms in this gene. In addition as more significant poly-
morphisms within the MnSOD gene are discovered, this
technique will facilitate detection within the MnSOD
gene.

The limitations of this technique ultimately come from
the quality of DNA that is available and the significant ini-
tial expense that is required for a TaqMan assay
instrumentation.

Conclusions
This report represents the first description of the MnSOD
-102C>T polymorphism in human subjects by a novel
Taqman allelic discrimination assay. This method should
enable molecular epidemiological studies to evaluate pos-
sible associations of this polymorphism with malignan-
cies and other diseases related to reactive oxygen species.

Methods
DNA sources
Most DNA samples (130) were isolated from buffy coats
of Caucasian controls derived from a population-based
case-control study of stomach cancer carried out in War-
saw, Poland as previously described [32]. To test the util-
ity of the method to genotype DNA from various tissue
sources, peripheral blood (20 samples), buccal swabs (40
samples), paraffin blocks (40 samples), and snap frozen
tissues (15 samples) were collected from research subjects
in the USA (Louisville, Kentucky).

DNA extraction from paraffin sections was performed
after tissue sections (10 sections, 10 µm thick) were cut
from paraffin blocks. Samples were removed from paraf-
fin through a sequential extraction with histaclear, 100%
ethanol and acetone, and dried under vacuum. The pellet
was incubated overnight with proteinase K (200 µg/ml in
50 mM Tris-HCL pH 8.5, 1 mM EDTA and 0.5% Tween-
20) at 55°C. After heating at 100°C for 10 min, digestion
was sequentially extracted with phenol, phenol/chloro-
form and chloroform. DNA was precipitated with the
addition of 3X volume 95% ethanol.

Primer design
SNP-specific polymerase chain reaction (PCR) primers
and fluorogenic probes (Table 1) were designed using
Primer Express (Version 1.5; Applied Biosystems, Foster
City, CA). This technique has been utilized extensively in
genotyping other candidate genes with multiple single
nucleotide polymorphisms[33,34]. The fluorogenic
probes were labeled with a reporter dye (either FAM or
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VIC) and are specific for one of the two possible bases (-
102 C or T) in the MnSOD promoter region. A MGB
quencher probe was utilized on the 3' end by a linker arm.
TaqMan Universal PCR Master Mix (Applied Biosystems)
was used to prepare the PCR. The 2X mix was optimized
for TaqMan reactions and contained AmpliTaq-Gold
DNA polymerase, AmpErase, UNG, dNTPs with UTP and
a Passive Reference. Primers, probes and genomic DNA
were added to final concentrations of 300 nM, 100 nM,
and 0.5–2.5 ng/µl respectively. Controls (no DNA tem-
plate) were run to ensure there was no amplification of
contaminating DNA. Reference control DNA was also uti-
lized to verify the polymorphisms identified. The amplifi-
cation reactions were carried out in an ABI Prism 7700
Sequence Detection System (Applied Biosystems) with
two initial hold steps (50°C for 2 min, followed by 95°C

for 10 min) and 50 cycles of a two step PCR (95°C for 15
sec, 60°C for 1 min). The fluorescence intensity of each
sample was measured at each temperature change to mon-
itor amplification of the 278 base pair MnSOD promoter
region. The -102 nucleotide was determined by the fluo-
rescence ratio of the two SNP-specific fluorogenic probes.
The fluorescence signal increases when the probe with the
exact sequence match binds to the single stranded tem-
plate DNA and is digested by the 5'-3' exonuclease activity
of AmpliTaq-Gold DNA polymerase (Applied Biosys-
tems). Digestion of the probe releases the fluorescent
reporter dye (either FAM or VIC) from the quencher dye.
As shown in figure 1, the method readily distinguishes
between at C or T at -102 in the MnSOD promoter region.

Twenty samples with genotypes C/T (4 samples), T/T (3
samples), and C/C (13 samples), some of which were
derived from paraffin-embedded tissues, were all con-
firmed by automated DNA sequencing. These sequence-
confirmed samples served as reference standards for the
remaining samples. In addition, 10% of the samples were
genotyped blind a second time with identical results
obtained.
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