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Abstract

Background: Locus heterogeneity poses a major difficulty in mapping genes that influence
complex genetic traits. A widely used approach to deal with this problem involves modeling linkage
data in terms of finite mixture distributions. In its simplest setup, also known as the admixture
approach, a single parameter is used to model the probability that the disease-causing gene of a
family is linked to a reference marker. This parameter is usually interpreted as the overall
proportion of linked families.

Results: In this article, we address two issues regarding the admixture approach. First, we tackle
the question of whether the single parameter of linked proportion is well defined in general. By
formulating the likelihood under a classification scheme based on distributions, we show that such
a parameter is meaningful only when a certain well-characterized condition is met. Second, we
study a condition given in the literature for validating the admixture approach. A counter example
is constructed to illustrate that the condition does not necessarily lead to valid estimates.

Conclusions: Estimators from the admixture approach may be inconsistent. This holds even if a
condition given in the literature to validate the approach is satisfied.

Background

Mapping disease genes influencing complex genetic traits
is far more difficult than mapping genes underlying Men-
delian traits. One of the difficulties is due to locus hetero-
geneity, in which the disease in different families (or in
different individuals within a family) is caused by differ-
ent loci or non-hereditary factors. Finite mixture distribu-
tions have been proposed to model linkage data in the
presence of locus heterogeneity [1], also known as admix-
ture modeling. It is currently a widely used approach for
testing heterogeneity and/or linkage [2]. In its simplest
setup with two parameters, each independent data unit
(usually a single family) is assumed to be either linked or
unlinked. Here a family is said to be linked if its disease-

causing gene is linked to a reference marker. In the two-
parameter setup, all linked families are assumed to have
the same linkage parameter, the recombination fraction 6.
The heterogeneity is modeled by a single parameter ()
that denotes the probability that a family is linked. This
parameter is interpreted by many researchers as the over-
all proportion of linked families.

Despite the popularity of the admixture approach, a
number of authors have pointed out limitations with the
approach, albeit reaching different conclusions on its
practical values. For example, one of the assumptions of
the admixture approach is that there is only inter-family,
but no intra-family, heterogeneity. Goldin [3] and Durner
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etal. [4] carried out simulation studies to show that viola-
tion of this assumption does not necessarily lead to a loss
of power for detecting linkage. Another inherent assump-
tion of admixture approach is that the genetic models at
the linked and unlinked loci are the same. Vieland and
Logue [5] showed that violation of this assumption leads
to asymptotically biased parameter estimates. They
showed that in this situation, the parameter & does not
even measure the proportion of linked families within the
sample, contrary to popular belief. Similar conclusions
were obtained in the simulation study by Pal and Green-
berg [6], in which the authors simulated data under vari-
ous two-locus heterogeneity models, genetic parameters,
ascertainment schemes, and phenocopy frequencies to see
their effect on a. Nevertheless, these studies as well as
some other simulation studies (see [7] and references
therein) support the use of admixture approach as a
robust tool for testing linkage in the presence of
heterogeneity.

Other researchers take a different view, pointing to poten-
tially severe biases of the estimates obtained from the
admixture approach (e.g., [8,9]). Whittemore and Halp-
ern [9] provided comprehensive discussion on the genetic
assumptions underlying the admixture approach. One of
the foci was on whether the admixture parameter () is
meaningful when certain assumptions are violated. Jans-
sen et al. [8] showed, through examples, that estimates of
a and @ can be severely biased when the distribution of
informativeness in the linked families is not roughly the
same as that in the unlinked families, under some meas-
ure of informativeness for linkage studies. They used a
measure called Effective Number of Informative Meioses
(EFNIM) to assess the informativeness of a family. It is
based on the Expected LOD (ELOD) score of a family.
They argued that, if the Linked and Unlinked Families are
nearly Equally Distributed (LUFED) in terms of EFNIM,
then the admixture procedure should provide satisfactory,
i.e., nearly unbiased, results.

In this article, we consider the same problems discussed in
Janssen et al. [8] and Whittemore and Halpern [9], but
from a more statistical perspective in terms of formulating
the likelihood based on finite mixture distributions. In
the usual formulation of finite mixture modeling for sta-
tistical inference, the data in the sample are independent
and identically distributed (iid). The distribution of each
of these data points is a finite mixture of several compo-
nent distributions, with known or unknown mixing pro-
portions, called weights [10,11]. In linkage analysis with
family data, unless all families follow the same distribu-
tions both under linkage and no linkage (i.e., all families
having the same component distributions), the usual
admixture approach does not reflect the correct likelihood
function (or, equivalently, the heterogeneity LOD func-
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tion). In most genetic studies using family data, this con-
dition is violated as data usually come from families of
various structures, sizes and complexities. That is, the fam-
ilies are not iid; they are independent but not necessarily
identically distributed. Therefore, the admixture mode-
ling with a single heterogeneity parameter is under param-
eterized. So, a natural question is what is its implication
on the estimators of the parameters. Are they consistent?
Under what condition does consistency hold? We investi-
gate these questions by formulating a more general likeli-
hood that assigns a separate heterogeneity parameter to
each class of families following the same distribution.
Then using this formulation, we show that the estimators
from the admixture formulation are consistent only if a
certain condition holds. Furthermore, we study the argu-
ment by Janssen et al. [8] on the LUFED condition for
obtaining nearly unbiased estimates. We show that
LUFED is a necessary condition for obtaining consistent
estimates. However, as we illustrate through counter
examples, this condition is not sufficient to guarantee
consistency. In fact, for certain data satisfying LUFED, the
asymptotic estimates can be far from their true values.

Results

Formulation of expected log-likelihood

Suppose that data from independent families in the sam-
ple are classified into T types such that families in the
same type follow the same distribution. That is, families
are classified into the same type based on their "struc-
tures" that lead to the specification of their distributions.
Here we use the term structure in a broad sense that
includes not only the pedigree structure but also any other
available information about the pedigree (such as knowl-
edge of phase) that contributes to the distribution from
which the family is generated. Note that structure does not
include any phenotypic or genotypic data of a family.
Families with the same structure but different phenotypic
and/or genotypic data are simply different realizations
from the same distribution and hence are iid, and are clas-
sified into the same type. In the most general setup, with
g potential linkage scenarios, e.g., linked or unlinked (g =
2) in the simplest setting, the probability distribution, f,.,
for a realization (y,) from type t, t = 1,...,T, can be
expressed in terms of its component distributions, f,;, i =
1,....4 [10]:

&
Jo (v:0) = Zatifti (7::0),

i=1
where the mixing parameters satisfy 0 < ;< 1 (i = 1,...,8),
2 23:1 o; =1, and @ is the linkage parameter vector,

including various recombination fractions.
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To simplify our presentation without compromising our
objectives, we assume that the disease under study is
caused either by a locus linked to the reference marker
with a recombination fraction & or by a locus unlinked to
the reference marker. Further, we assume that the genetic
(trait) models at the linked and unlinked loci are the
same. So, the linkage parameter vectoris 8= {6, 1/2}, and
the probability distribution is simplified to

folvs £01/2}) = af(yi 6) + (1 - a)fi(ys 1/2),

where ¢, is the probability that a type ¢ family is linked.
Note that the two distributions under the mixture have
the same parametric form but differ in their linkage
parameter values, being & or 1/2. Also, note that a single
a parameter is used for all families in the same type.

Let a denote the true proportion of linked families in the
entire sample. Letp, t = 1,..., T, be the true proportion of
type t families in the linked group. Thus p = (py,..., pp) is
the distribution of types among the linked families. Recall
that all families in a given type have the same distribution,
i.e., same likelihood for any value of the recombination
fraction. Similarly, define g = (¢,,..., gr) to be the distribu-
tion of family types among the unlinked group. Then the
probability that a family is of type t is 5, = ap, + (1 - a)q,
and the probability that a type t family is linked is thus

aé) =ap, /s, . Furthermore, let r denote the true common

recombination fraction for the linked families. The likeli-
hood contribution for estimating the parameters {¢, 6}

by a type t family with data y, is

Lt(at' 0| YL) = atft()/z; 9) + (1 - at)ft(yt; 1/2)- (1)

Then the expected contribution to the log-likelihood from
a family of type t can be expressed as

ELL (¢,0) = Yo fy (yiir) + (1 =) fy (v s/ 2)llog Ly (e 8] y,), t =1, T.
Vi

Note that 7 and & = {a,--,0} are the true underlying
quantities, whereas 6 and a = (¢, ..., o) are the parame-
ters to be estimated from the data Combining the
expected log-likelihoods, ELL, t = 1,..., T, we can form the

total expected log-likelihood from all family types as
follows:

T
ELL(@,0) = ' [ap, + (1 - a)q, JELL, (c,0).

t=1
Since the above formulation of likelihood is correct under
the stated assumptions, it can be shown that ELL(?, r) >
ELL(¢, ), for any (¢, 6), following Stuart and Ord [12].
This implies that this formulation of likelihood is guaran-
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teed to provide consistent estimators of (¢, €). Note that
a is a vector of nuisance parameters; only 6 is the true
parameter of interest.

We note that the above likelihood, although similar to the
one presented in Vieland and Logue [5], is different from
it in two respects: First, their likelihood (and hence log of
likelihood ratio, referred to as 2T-HLOD in their paper)
allows for different trait models at the linked and
unlinked loci (as they wanted to see the effect of incor-
rectly assuming same trait models at the two loci) while
these two are assumed to be the same in (1). Second, 2T-
HLOD involves different « parameters for families with
different structures as well as different phenotypic data.
So, families with the same structure have different «
parameters if they have different phenotypic data. On the
other hand, in (1) families with the same structure (and
hence their data coming from the same distribution as
elucidated at the beginning of this section) share a com-
mon ¢« parameter. Since the issue addressed by Vieland
and Logue [5] is different from ours and is based on dif-
ferent assumptions, the two likelihood formulations are
not directly comparable.

The two-parameter setup

In this subsection, we show that the two-parameter setup
leads to correct likelihood formulation only when p = g,
that is, the distribution of family types among the linked
families is the same as that among the unlinked families.
In this setup, all ¢,'s are set to be equal to a common
parameter, ¢, the overall proportion of linked families.
Hence, the total expected log-likelihood is with respect to
the recombination fraction & and a single proportion
parameter :

ELL(c,0) = i[ap[ +(1-a)q,JELL,(c,0). 2
t=1

The expected log-likelihood ratio between the two sets of
parameter values, (a, 7) and (¢, 6), is

T T
ELLR(a,7;01,0) = Y [ap, + (1 - a)q,]|ELL, (a,7) — ELL,(e,0)] =) 5,Q,
t=1 t=1

where

Q, = ELL,(a,r)—ELL,(ct,6)

= %[at fyr)+(1-o )ft (Vt/l/z)]logL " 0||)/[t)
ap; a _a)(h . M
_;‘[ R k ﬁ(ytllﬁ)]logu(a,elyt)’
When p, = g, for each ¢,
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p: Lt(a,r|yt)
Q ===) L/(ar|y)log——,
' 5t% ! | 2 Lt(a19|)’z)

and by Jensen's inequality [13]

Ly(a,r]y)

Li(c.0|y,)

T
ELLR(a,r;t,0) = z b 2 L(ar ‘ y;)log
t=1 Ve

20, forany(c,0).

In other words, when p = ¢, ELL(4, 1) 2 ELL(¢, 0), for any

(e, 0), implying that & = a and 6 = r are the maximum
likelihood estimates of @ and 6. However, as shown in the
examples in the next section, when p # ¢, ELL(4, r) may be
smaller than ELL(¢, 6) for some parameter values (o, 6).
That is, the maximum likelihood estimates of @ and & may
not be consistent because the likelihood model is incor-
rectly specified (under-parameterized). In order for the
two-parameter formulation to be correct, the following
constraints should be placed on the makeup of the
families:

0_ ap,
ap; +(1—a)q,

which implies that p = q given the additional constraints

=constant, t=1,---,T,

that thc =1 and tht =1.Notice thatp = g is stronger

than the LUFED condition. Equal distributions of types in
the linked and unlinked families according to the classifi-
cation scheme based on distributions of the data implies
equal distributions of informativeness in the same two
groups. Therefore, LUFED is a necessary condition for the
admixture approach. We also note that p = g is not neces-
sarily satisfied for every dataset (see Discussion).

In general, in a parameterization that demands an esti-
mate for the overall proportion of linked families, ¢, the
relationship between « and ¢, is as follows:

o,

— =0, t=1,---T, (3)
ou, +(1-a)y,

where u, and v, are also unknown parameters (with con-
straints 2u, = 1 and Xy, = 1) that need to be estimated.
Note that 1, and v, are the parameters to be estimated from
the data and are not necessarily the same as p, and ¢,
respectively, as the latter are the true values of the former.
We have shown earlier that the maximum likelihood esti-
mates for ¢, exist. However, one cannot solve the equa-
tions in (3) to obtain a corresponding estimate for ¢. This
is because there are only T + 2 equations (including the
two constraints) but 2T + 1 unknown parameters, and
thus not all parameters are identifiable when T> 2. Hence,
one may not be able to find a meaningful estimate of the
overall proportion of linked families, contrary to popular
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desire for such an estimate. This is consistent with the
finding of Whittemore and Halpern [9], although the con-
clusions are reached from two different perspectives (see
Discussion).

Further investigation of LUFED condition

We have already shown that LUFED is a necessary condi-
tion for obtaining consistent estimators using the admix-
ture approach. In this section, we investigate, through a
contrived dataset, whether LUFED is also a sufficient con-
dition for achieving satisfactory results, as contended by
Janssen et al. [8]. We use ELOD, a popular measure of
informativeness [2], for family type classification in terms
of their informativeness for linkage studies. This measure
is the basis for the EFNIM criterion of Janssen et al.
([14,8]); see these two references for detailed description
of EFNIM.

In our contrived dataset, the linked group consists of two
types of families: Phase Known (PK) double backcross
families in proportion p,, and Phase Unknown (PU) fam-
ilies in proportion p,, where p, + p, = 1. The unlinked
group is also composed of PK and PU families, but in pro-
portions ¢; and ¢,, respectively, where ¢, + q, = 1. We
choose to work with the PK and PU families as the PK
families were used by Janssen et al. [8] to evaluate the
admixture approach, and more generally, these family
types are frequently used to evaluate exact properties of
linkage analysis methods [2]. We assume that there are m
children in all PK families and m + 1 children in all PU
families. As these two types of families have different dis-
tributions [2], we have two family types (T = 2) under the
classification scheme according to distributions.

Now, let us consider the ELOD of each family. The ELOD
of a PK family with m children is:

n(m
ELODpy (6) = 2( ) ]rk (1-1)"*log,,2m6* (1-6)"F,
k=0
where, as before, 8 is the parameter for recombination
fraction while r is the true recombination fraction. Simi-
larly, one can find the ELOD of a PU family with m + 1
children:

m
ELODpy(6) = Y, 1( mrl ) [k (1= )i =k )

2\ Kk

X10g102m[9k(1 _ 9)m+1—k + 9m+1—k(1 _ Q)k] )

For r close to 0, it can be seen that ELODpg(#) and
ELODpy(8) are both approximately m log,, 2, when they
are evaluated at =1 [2]. Hence, both PK and PU families,
irrespective of their linked or unlinked status, are of one
common type according to the ELOD criterion for
classification. Thus the data satisfy Janssen et al.'s [8]
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LUFED condition. Note that the ELOD criterion for classi-
fication (and hence the LUFED condition) is based on
homogeneity LOD scores to evaluate the informativeness
of a family for linkage study and thus does not involve «
parameters.

It is worth noting that this dataset may serve as an exam-
ple for understanding classification based on distribu-
tions and family realizations that make up a family type.
The phase information as well as the number of offspring
are part of the family structure, which is the basis of clas-
sification according to distributions. However, pheno-
types and genotypes do not configure into this
classification scheme. For example, the PK data type con-
sists of families with several phenotypes, i.e., various com-
binations of recombinant/non-recombinant (m/0, m - 1/
1,..., 1/m - 1, 0/m) offspring.

To illustrate our results, we consider two specific settings
for the distributions of families in the linked and
unlinked groups under the classification scheme accord-
ing to distributions: (a) p = (0.9, 0.1), 4 = (0.1, 0.9); and
(b)p =(0.3,0.7), g = (0.4, 0.6). For each of these two set-
tings, we take m = 3 children in PK familiesand m + 1 =4
children in PU families. In both settings, the overall pro-
portion of linked families, a, is 0.5, and the true (small)
recombination fraction, r, is 0.02. So, as discussed above,
the distribution of informativeness among the linked
families, under the ELOD measure, is the same as that
among the unlinked families. The two pictures in Figure 1
show the contour plots of the expected log-likelihood
under the two settings, for the two-parameter admixture
formulation as given in (2). We see that the values of the
parameters (¢, 0) where the maximum expected log-like-
lihood occurs are not the same as their true values. So the
estimates are inconsistent. The extent of this inconsistency
depends on several factors, including how close p is to g.
As seen in Figure 1 (a), where p differs greatly from g, the
parameter estimates are far away from the true values. On
the other hand, in Figure 1 (b), where p is close to ¢, the
estimates are not too far from the truth. In fact, the esti-
mates are expected to converge to the true parameter val-
ues when the difference between p and ¢ approaches 0.

Discussion

This article addresses two questions. Is the single parame-
ter representing the overall proportion of linked families
in the admixture approach well defined? Can one validate
the admixture approach if the distributions of linkage
information in the linked and unlinked families are
roughly the same according to a certain measure of
informativeness? A simple situation, where the disease is
caused either by a linked or an unlinked locus following
the same genetic model, suffices for our purpose. That is,
although issues such as age-dependent penetrances, locus-
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dependent models, and intra-family heterogeneity are
very important in analyzing data in the presence of locus
heterogeneity, they are not within the scope of this article.

The first question of interest was addressed in Whittemore
and Halpern [9], where they characterized the genetic con-
ditions under which the parameter for overall linked pro-
portion is meaningful. In contrast, we consider the same
question from a more statistical perspective by character-
izing statistical conditions under which the linked-propor-
tion parameter is well defined and consistent estimate can
be obtained. Our basic argument is built upon the realiza-
tion that an implicit assumption in the usual admixture
approach can be badly violated. The admixture approach
assumes that, implicitly in the way its likelihood is formu-
lated, all families follow the same distribution. However,
data from different families may follow different distribu-
tions, defining various types of data. Our results show
that, if the distributions of the family types, classified by
the distributions of the data, are the same for both the
linked and unlinked families, i.e., p = g, then the parame-
ter is meaningful, and a consistent estimate exists. Other-
wise, the desire for an estimate of such a parameter is ill-
conceived. Note that the condition p = ¢ may not be satis-
fied in practice, even asymptotically, because linked and
unlinked groups may have other differences such as differ-
ent fertility levels, age of disease onset, disease severity,
etc, that may indirectly lead to different family structures
(and hence different distributions) in the two groups.
Although the problem considered in Vieland and Logue
[5] is different from what we consider, as they focus on
violation of different implicit assumptions of this
approach, from a broader perspective, their as well as our
conclusions demonstrate the inconsistency of estimators
obtained from the admixture approach.

The second question stems from our curiosity on an argu-
ment made by Janssen et al. [8] for the admixture
approach. We show, through counter examples with a
contrived dataset, that the answer to the question is no
under the ELOD measure for informativeness. The differ-
ence between the estimates and the true values of the
parameters, even with infinite amount of data, can be
large, if one would carry out the analysis under the admix-
ture approach. This should serve as a warning against
complacency when the LUFED condition is met. We do
realize that, with phase known and phase unknown data,
these examples can be quite extreme in human genetic
studies, although such data arise frequently in experimen-
tal crosses. In situations where data from more general
family structures are available, the effect of violation of
the admixture approach assumptions may be much
smaller.
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Contour plots of the expected log-likelihood for the two-parameter model: (a) p, = 0.9, p,=0.1, q, = 0.1, g, = 0.9; (b) p, = 0.3,
p,=0.7,q, = 0.4, g, = 0.6. The numbers in each plot are various levels of the expected log-likelihood. The expected log-likeli-
hoods at the parameter combinations represented by a curve are the same.

The criteria for classification of families deserve further
clarification because it is the heart of the problem. We dis-
cuss two criteria for classification, one according to the
distributions of the data, and the other according to a
measure of informativeness of the data for linkage studies
(leading to the LUFED condition). The classification
scheme based on the distribution criterion leads to a nec-
essary and sufficient condition for validating the admix-
ture approach. This result is a by-product of our
theoretical development for finding an answer to the first
question. The classification scheme based on the inform-
ativeness criterion, on the other hand, leads to the conclu-
sion that LUFED is only a necessary, but not a sufficient,

condition for the admixture approach, contrary to Janssen
et al.'s [8] contention.

Finally, we note that although the general formulation of
likelihood based on forming groups of families with the
same distribution gives consistent estimators, its practical
utility seems to be limited. This is mainly due to the diffi-
culty of classifying families according to distributions, in
most applications, except for simple situations such as
those involving only the PK and PU families. The general
likelihood formulation is used here as a vehicle to further
the understanding of potential problems in using the two-
parameter admixture approach. A practical solution that
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embeds the correct likelihood formulation in a Bayesian
framework is being pursued in a separate study.
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