
BioMed CentralBMC Genetics

ss
Open AcceProceedings
HDL cholesterol in females in the Framingham Heart Study is 
linked to a region of chromosome 2q
Kari E North*1, Lisa J Martin2, Tom Dyer3, Anthony G Comuzzie3 and 
Jeff T Williams3

Address: 1Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, 27514 USA, 2Center for Epidemiology and 
Biostatistics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229 USA and 3Department of Genetics, Southwest Foundation 
for Biomedical Research, San Antonio, Texas, 78245 USA

Email: Kari E North* - kari_north@unc.edu; Lisa J Martin - lisa.martin@cchmc.org; Tom Dyer - tdyer@darwin.sfbr.org; 
Anthony G Comuzzie - agcom@darwin.sfbr.org; Jeff T Williams - jeffw@darwin.sfbr.org

* Corresponding author    

Abstract
Background: Despite strong evidence for a genetic component to variation in high-density
lipoprotein cholesterol levels (HDL-C), specific polymorphisms associated with normal variation in
HDL-C have not been identified. It is known, however, that HDL-C levels are influenced in complex
ways by factors related to age and sex. In this paper, we examined the evidence for age- and sex-
specific linkage of HDL-C in a longitudinal sample of participants from the Framingham Heart Study.

To determine if aging could influence our ability to detect linkage, we explored the evidence for
linkage of HDL-C at three time points, t1, t2, and t3, spaced approximately 8 years apart and
corresponding respectively to visits 11, 15, and 20 for the original cohort and 1, 2, and 4 for the
offspring and spouses. Additionally, to examine the effects of sex on linkage at each time point, we
estimated the heritability and genetic correlation of HDL-C, performed linkage analysis of HDL-C,
tested for genotype-by-sex interaction at a QTL, and performed linkage analysis of HDL-C in males
and females separately.

Results and Conclusion: In women, we found evidence for a QTL on chromosome 2q
influencing HDL-C variation. Although the QTL could be detected in the combined sample of males
and females at the first time point, the linkage was not significant at subsequent time points.

Background
Despite strong evidence for an additive genetic compo-
nent to variation in high-density lipoprotein cholesterol
(HDL-C) levels, specific polymorphisms associated with
normal variation in HDL-C have not been identified. It is
known, however, that HDL-C levels are influenced in
complex ways by factors related to age and sex [1]. With
specific reference to the Framingham Heart Study, Son-
nenberg et al. [2] found that dietary fat and alcohol

showed different relationships to HDL-C in pre- and post-
menopausal women, and Wilson et al. [3] showed that
HDL-C levels declined with advancing age and increasing
obesity. In light of these indications of age and sex differ-
ences in HDL-C variability, we elected to examine the evi-
dence for sex- and age-specific linkage of HDL-C in a
longitudinal sample of participants from the Framingham
Heart Study.
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Methods
Data
The study design and methods of the Framingham Heart
Study have been detailed elsewhere [4,5]. Beginning in
1948, 5209 subjects between the ages of 28 and 62 years
were enrolled in the original cohort study and, starting in
1971, 5124 of their offspring and spouses were enrolled.
Participants were invited to attend regular follow-up visits
every 2 to 4 years, for the cohort and offspring groups,
respectively.

We examined fasting HDL-C at time points t1, t2, and t3,
spaced approximately 8 years apart and corresponding
respectively to visits 11, 15, and 20 in the cohort and visits
1, 2, and 4 for the offspring and spouses. We chose the ear-
liest observations to maximize our sample size, and con-
sidered only those individuals for whom complete data
were available for age, sex, and cohort, various age-by-sex
interactions, and cohort effects. Data were also cleaned for
outliers (defined here as any observation greater than 4
standard deviations from the global mean) to reduce the
effect of trait non-normality (kurtosis) on the analysis [6].
The kurtosis of the trimmed dataset for HDL-C is 0.3, 0.5,
and 0.4, at t1, t2, and t3, respectively.

Our final sample size was 1562 participants, including in
total 663 parent-offspring, 1273 sibling, 445 avuncular,
which are aunt/uncle-niece/nephew pairs, and 717 pairs
of first cousins. In all, the sample included information
on nearly 3300 relative pairs.

Analytic methods
Univariate quantitative genetic analysis was done to parti-
tion the phenotypic variance of HDL-C into its additive
genetic and environmental variance components using
maximum likelihood variance decomposition methods.
The initial analysis screened for the following covariates:
sex, age, age-by-sex interaction, cohort, body mass index
(derived from height and weight), drinking status, and
hypertensive status. Any covariates whose effects were sig-
nificant at the p = 0.10 level in the initial analysis were
retained in subsequent analyses, even if the significance
levels decreased after inclusion of other covariates. After
the initial covariate screening, maximum likelihood
methods were used to estimate the effects of covariates
and additive effects of genes.

Next, we generated genome-wide LOD scores for HDL-C
at three time points, implemented in the program package
SOLAR, using the methods detailed by Almasy and Blang-
ero [7]. A pair-wise maximum likelihood-based procedure
was used to estimate multi-point IBD probabilities. To
permit multi-point analysis for QTL mapping, an exten-
sion of the technique of Fulker and colleagues [8] was
employed.

The basic variance components approach can then be
extended to a multivariate framework [9,10]. In the mul-
tivariate linkage model, the phenotype covariance is fur-
ther decomposed to include the genetic correlation
between traits due to additive genetic effects and the
shared effects of the QTL, such that the covariation
between two individuals for two traits is given by:

where a and b can be trait 1 or 2 and ρg is the additive
genetic correlation between the two traits. This approach
has been implemented in SOLAR version 2.0.

We next tested for linkage to HDL-C using a variance-com-
ponents linkage model extended to include genotype-by-
sex interaction at a QTL [11-13]. The expected genetic cov-
ariance between a male and female relative pair i,j is
defined as:

σg ij = 2φij ρg ij σgM σgF + πij ρq ij σqM σqF,

where φij is the coefficient of kinship between the two
individuals, ρg ij is the additive genetic component of the
correlation between the expressions of the trait in the two
sexes, and σgM and σgF are the genetic standard deviations
for males and females, respectively; πij is the probability
that individuals i and j are IBD at a quantitative trait locus
tightly linked to a marker locus; ρq ijis the marker-specific
component of the trait correlation between the sexes; and
σqM and σqF are, respectively, the marker-specific genetic
standard deviations for males and females. Under the null
hypothesis of no genotype-by-sex interaction at the QTL,
the male and female marker-specific variances are equal
(σ2

qM = σ2
qF).

Lastly, because a significant genotype-by-sex interaction
was found, we generated genome-wide LOD scores for
HDL-C at three time points in males and females sepa-
rately in the program package SOLAR using the methods
detailed by Almasy and Blangero [7].

Results
At t1, t2, and t3, the mean ages of the sample members
from the longitudinal sample were 38.3, 46.5, and 54.8
years, respectively. The residual heritability of HDL-C was
estimated as 0.42 ± 0.05 across all three time points (sexes
combined). Age, sex, and age-by-sex interactions were sig-
nificant between time points, where as cohort effects were
significant only at the last observation, t3. The variance
explained by covariate effects was nearly constant, varying
from 18% at t1 to 20% at t3. In preliminary analyses we
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also considered body mass index (derived from height
and weight), drinking status, and hypertensive status as
covariates (n = 1506; data not shown). The results were
not significantly different from those presented below,
and we did not interpret these analyses further.

The genetic correlations of HDL-C between time points,
for males and females separately, are shown in Table 1.
Measures were highly correlated across all time points,
and the correlations for males and females were not sig-
nificantly different.

In a preliminary genome scan of HDL-C we obtained a
maximum LOD score of 3.4 on chromosome 2 at 150 cM

for the t1 observation. At t2 the maximum LOD score was
0.6 at 120 cM, and at t3 the maximum LOD was 1.1 at 122
cM. Based on these results we chose to restrict further
analysis to chromosome 2 and to examine males and
females separately at each time point. The results of sepa-
rate linkage analyses in males and females are summa-
rized in Figure 1 and Table 2 and suggest that, although
the total additive genetic effect on HDL-C is not signifi-
cantly different in males and females, sex does exert a
strong effect on the QTL-specific variance of HDL-C.

We also considered the possibility of genotype-by-cohort
and genotype-by-sex interactions on the HDL-C linkage,
by formally modeling an interaction between sex and

Table 1: Genetic correlation between HDL-C at three time points for males (upper triangle) and females (lower triangle).

t1 t2 t3

t1 - 1.0 1.0
t2 0.96 ± 0.07 - 0.98 ± 0.06
t3 0.91 ± 0.07 0.88 ± 0.08 -

Table 2: Maximum LOD scores on chromosome 2 in separate linkage analyses of male and female subjects.

HeritabilityA Chromosome 2
Maximum LOD

Centimorgans (cM)

Females
t1 0.48 ± 0.10 3.2200 133.0000
t2 0.42 ± 0.10 1.8600 126.0000
t3 0.38 ± 0.09 2.3600 132.0000
Males
t1 0.62 ± 0.10 0.5200 140.0000
t2 0.50 ± 0.10 0.1600 140.0000
t3 0.51 ± 0.09 0.2900 150.0000

AAll heritabilities significant at p = 0.0001.

Table 3: Genotype×sex linkage results from chromosome 2 at 135 cM.

Mean σg σe σq h2
g h2

q

Females
t1 58.38 ± 0.89 2.20 ± 2.19 10.16 ± 0.73 9.75 ± 0.93A 0.0200 0.4700
t2 57.70 ± 0.82 5.96 ± 1.86 9.50 ± 0.77 6.51 ± 1.63 0.2100 0.2500
t3 52.48 ± 0.87 5.86 ± 1.81 10.19 ± 0.77 6.94 ± 1.61 0.1800 0.2600
Males
t1 44.64 ± 1.37 7.66 ± 1.25 7.25 ± 0.88 4.25 ± 1.48A 0.4500 0.1400
t2 45.87 ± 1.28 7.56 ± 0.93 7.34 ± 0.72 1.11 ± 2.22 0.5100 0.0100
t3 39.69 ± 1.51 7.78 ± 1.16 8.19 ± 0.70 2.56 ± 2.21 0.4500 0.0500

AAt t1 σq,F ≠ σq,M p = 0.01.
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cohort in the linkage analysis (Table 3). All estimates of
genotype-by-cohort interaction were nonsignificant
(results not shown); at t1, however, males and females
showed significantly different genetic variances (p = 0.01).

Discussion
In a longitudinal sample of women from the Framingham
Heart Study we found evidence for a QTL on chromosome
2q influencing HDL-C variation. Although the QTL could
be detected in the combined sample of males and females
at the first time point, the linkage was not significant at
subsequent time points.

In sex-specific analyses, the QTL was detected consistently
in females but not in males. Apart from the interaction
with sex, our results are similar to those of Almasy et al.
[14], who reported a LOD score of 2.3 at 140 cM on chro-
mosome 2 for unesterified HDL-C.

Unfortunately, we did not have the desired covariate data
to evaluate fully other possible sources of change across
the time points, such as the influence of menopause, hor-
mone therapy, oral contraceptive use, and nutrition. We
therefore propose to examine further the evidence for sex-
specific linkage of HDL-C in future studies of the Framing-
ham Heart Study.

A search of genome databases revealed two plausible can-
didate genes located on chromosome 2q near marker
D2S1326; these are the phospholipase A2 receptor 1
(PLA2R1) at 2q23–2q24 and the oxysterol binding pro-
tein-like 6 receptor (OSBPL6) at 2q32.1. Studies have
demonstrated that estradiol affects PLA2R1 activity [15]
and a relationship between secretory phospholipase A2
and HDL-C levels [16,17]. Oxysterol binding protein-like
6 is an intracellular lipid receptor that may have a regula-
tory role in the synthesis of cholesterol [18,19].
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