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Abstract

Background: For analyzing longitudinal familial data we adopted a log-linear form to incorporate
heterogeneity in genetic variance components over the time, and additionally a serial correlation
term in the genetic effects at different levels of ages. Due to the availability of multiple measures
on the same individual, we permitted environmental correlations that may change across time.

Results: Systolic blood pressure from family members from the first and second cohort was used
in the current analysis. Measures of subjects receiving hypertension treatment were set as
censored values and they were corrected. An initial check of the variance and covariance functions
proposed for analyzing longitudinal familial data, using empirical semi-variogram plots, indicated that
the observed trait dispersion pattern follows the assumptions adopted.

Conclusion: The corrections for censored phenotypes based on ordinary linear models may be
an appropriate simple model to correct the data, ensuring that the original variability in the data
was retained. In addition, empirical semi-variogram plots are useful for diagnosis of the (co)variance
model adopted.

Background

Longitudinal designs in family studies represent addi-
tional opportunities to model temporal variation in
genetic and environmental factors influencing quantita-
tive traits. For certain phenotypes, like anthropometric
measures and blood pressure, more insight into its contin-
uous physiological variation may be provided for adopt-
ing phenotype (co)variance components as a function of
time, rather than scalar components. In this article the
term (co)variance is been used to refer both to variance
and covariance components.

The classical approach to the genetic analysis of longitudi-
nal traits, under the variance component framework, con-

siders an unstructured covariance matrix [1] for modeling
the correlations on the sequence of measurements within
an individual. Without making assumptions about the
(co)variance, terms the model is not flexible for incom-
plete profiles, and it is not clear how to define the herita-
bility measures to incorporate the longitudinal features.
One approach is to use structured (co)variance patterns,
assuming, for instance, that the different variance compo-
nents change across time with ages, according to a para-
metric function, and allowing the autocorrelation process
within the measurements of the individuals. In this
regard, gains in precision are obtained by reducing the
number of parameters involved in the analysis.
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Using the real longitudinal Framingham Heart Study data,
we analyzed the systolic blood pressure as the trait of
interest. To pursue the major genes influencing the trait,
under the mixed-model longitudinal approach, we

employed the genetic variance function Gé = exp(o+t)

in the familial model, where t represents the age in the
application. Under this parameterization, a possible het-
erogeneity of the genetic variance, in continuous time, is
being considered through the parameter y, which repre-
sents an interaction effect between genetic and environ-
mental factors. If there is evidence of change in the genetic
variance across time, the parameter v is significantly differ-
ent from 0. Additionally, the correlation in genetic effects
at different ages (for instance, t and s) was modeled as p ,

= exp (- M|t - s|), where A is assumed different from 0.

To absorb the dependence in the sequential measure-
ments within an individual, environmental correlations
were added in the model. Data from family members
from the first and second cohort that were re-examined 21
and 5 times, respectively, during the longitudinal phase of
the study, were used in the current analysis. The precision
of the estimates obtained from these analyses was com-
pared. For subjects receiving hypertension treatment, the
recorded systolic blood pressure was considered as cen-
sored value, and to accommodate it in the analysis, we
proceeded with corrections using a nonparametric algo-
rithm to adjust the censored phenotypes, as considered by
Levy et al. [2]. Only systolic blood pressure measures
taken when subjects were aged 18 years or more were sup-
posed to be informative for the analysis.

Methods

Adjusted right-censored phenotypes

For subjects receiving hypertension treatment, the
recorded systolic blood pressure was considered as a right-
censored value, since one knows that it is less than what
the untreated value would be. To accommodate the cen-
soring process in the analysis we addressed corrections on
the censored phenotypes through the nonparametric
algorithm used by Levy et al. [2]. Separate adjustments
were conducted according to sex and age groups (<35, 35
to 44, 45 to 54, 55 to 64, 65 to 74, and 75 years). In this
phase of the analysis, for adjustment of the censored
measurements, ordinary linear regression models were
adopted to investigate the relationship between age and
systolic blood pressure, despite multiple observations
being available in the same individuals. Because assump-
tions about phenotype (co)variance structure can affect
the fitted values, it is useful to have simple methods for
correction of the censored responses. The residuals
obtained were ordered to generate a sample from a dis-
crete reference distribution. Censored phenotypes were
adjusted by conditional expectations of the untreated
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residuals given residual values of equal or greater magni-
tude. Once untreated observations constituted the vast
majority of the data, this replacement process should not
reduce the original variability of the data [3].

Longitudinal familial variance component model

To define the adopted model, let Y(r) denote a measure-
ment on the j individual at the time ¢. The cross-sectional
familial variance component approach [4] can be
extended for longitudinal data. The polygenic model was
defined as:

Vi) =pn+X;B+gj +ej,

where p is the overall mean, X is a covariates vector
(describing, for instance, sex scores, linear and quadratic
polynomial coefficients associated with levels of age, and
possible interactions) at occasion t for the j individual, 8
is a parameters vector associated with the fixed effects, g;
and e¢;, are uncorrelated random effects due to polygenic
and environmental sources of variation, respectively. For
relatives i and j, observed at t and s occasions, respectively,
we assume:

o3 (1) +05 (1) s
Og(1)og(s)p(t;s) +0,(L,5) i=jit s

g(t)og . i
Cov(Yi(t);Yj(s)): ) =i,
20;;05(t) i#jit=s
izjt#s

20;0¢(t)o (s)p(t,3)

where 2¢; is the kinship coefficient between relatives i and
j.

Following Aitkin [5], who considered a log-linear form for
modeling the heterogeneity of the variance, we employed

the polygenic variance function 0-(2‘3 (t) =exp(a+7t),

where t denotes age. The parameter y accommodates lon-
gitudinal changes in the trait heritability, and represents
the interaction effect between the polygene and age. Since
polygenic correlations between the expressions of the trait
at different ages usually depends on their time range, we
adopted a monotone decreasing function p(t,s)=exp(-A|t-
s|), as proposed by Diggle [6] and Huggins et al. [7]. Stat-
ing that p(t,s) is different from 1 suggests that different
polygenes influence the trait in different ages. Also, mod-
eling the correlation structure in continuous time admits
unbalanced sequences of measurements on the different
individuals.

To complete the specification of the model, because mul-
tiple measurements are available in the same individuals,
we need to adopt parametric functions to the
environmental components, 62(t) and o, (1, s). As stated
before, log-linear variance function and serial correlation
structure were assumed. Additionally, such parametric
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Table I: Trait average to untreated (SBP), hypertension treated (SBP_Hy) and adjusted (SBP*_Hy) values

Age N # Hy Residual < 0 Residual > 0

SBP SBP_Hy SBP*_Hy SBP SBP_Hy SBP*_Hy
Male
18-34 841 10 110.58 114.33 127.08 130.10 134.86 143.36
3544 1082 50 112.90 107.90 126.35 132.82 135.68 145.76
45-54 926 104 116.20 117.30 135.40 138.52 143.31 158.77
55-64 517 134 120.51 123.67 148.88 148.22 151.20 168.79
65-74 139 55 123.67 128.83 161.73 155.00 158.19 181.08
75 12 6 124.33 127.25 148.96 153.00 156.00 157.56
Total 3517 359
Female
18-34 804 3 101.5 - - 160.68 121.00 129.31
3544 1080 49 103.26 108.60 123.17 124.34 134.10 145.37
45-54 1008 110 109.20 114.09 133.57 134.84 138.77 152.60
55-64 565 132 115.54 121.09 147.68 145.25 148.93 168.15
65-74 196 64 122.04 127.43 154.64 150.16 152.30 173.01
75 7 2 126.50 - 165.00 316.00 330.47
Total 3660 360

(co)variance functions may be extended for longitudinal
familial oligogenic model. In this case, for major genes are
attributed random effects, which are associated with
familial covariance matrices structured in terms of iden-
tity-by-descent matrices.

To estimate the parameters involved in the specification
of the (co)variance components under multivariate nor-
mal distribution and involving longitudinal and familial
dependence patterns, we used a version of the EM (expec-
tation maximization) algorithm, as described by Iturria
and Blangero [8] and implemented into the software
SOLAR. Hypothesis tests concerning the (co)variance
parameters involved were conducted through likelihood
ratio statistics.

Empirical semi-variogram

The empirical semi-variogram of a sequence of measure-
ments within the same individual is a scatter plot of
squared differences of residuals,

d]z (t,5) = 0.5[r;(t) - 1 (s)I* against the corresponding lag
of times (|t - s|). In this regard, the residuals are obtained
from ordinary linear regression adjustment of the pheno-
type in terms of covariates involved in the study. We used
the empirical semi-variogram to provide a valuable, but
informal, initial check on the longitudinal (co)variance
structure, as used by other authors [6,9].

Results

During the analysis of the second cohort, we considered
longitudinal measurements from 1667 individuals (822
male and 845 female), totaling 7177 observations. A vast
majority of individual profiles (81%) contain four or five

measurements throughout the study. The results of the
adjustments for censored phenotypes receiving hyperten-
sion treatment are presented in Table 1. The greatest pro-
portions of corrections occur for measurements with
negative residuals, within males, and higher ages.

Figure 1 shows standard deviation of ordinary least-
square residuals plotted against ages. The plot suggests
that the variances for the phenotype change with age. The
log-linear dispersion pattern can represent an appropriate
model, and will be adopted in the analysis. Additionally,
Figure 2 plots empirical semi-variogram values as a func-
tion of the lag of ages. The non-random pattern shown
implies that the contribution of the autocorrelation proc-
ess is not negligible and needs to be absorbed in the
analysis.

Conclusions

In this work, we presented a methodology to analyze lon-
gitudinal familial data set, considering the adoption of
parametric functions for modeling genetic and environ-
mental (co)variance components involved. The approach
is applied for trials of systolic blood pressure measure-
ments. Considering that the hypertension treatment gen-
erates a right-censored response, we proceeded with
corrections on the values observed under treatment. The
corrections were based on information from residuals
obtained through ordinary linear models, an appropriate
simple model useful to estimation in this phase of the
analysis. Because the vast majority of the data are
untreated measures, such replacement ensures the origi-
nal variability of the data, which will be modeled in terms
of genetic and environmental (co)variance components.
An initial check of the proposed parametric (co)variance
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Figure 2

Empirical semi-variogram for real data set from second
cohort.

functions, using empirical semi-variogram plots, indi-
cated that the systolic blood pressure dispersion pattern
follows assumptions as heterogeneity of variance and
autocorrelation process. Having done these preliminary
analyses, we are now involved in the estimation and
hypothesis tests related to the genetic parameters of the
proposed model.
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