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Abstract
Current linkage analysis methods for quantitative traits do not usually incorporate imprinting
effects. Here, we carried out genome-wide linkage analysis for loci influencing adult height in the
Framingham Heart Study subjects using variance components while allowing for imprinting effects.
We used a sex-averaged map for the 22 autosomes, while chromosomes 6, 14, 18, and 19 were
also analyzed using sex-specific maps. We compared results from these four analyses: 1) non-
imprinted with sex-averaged maps, 2) imprinted with sex-averaged maps, 3) non-imprinted with
sex-specific maps, and 4) imprinted with sex-specific maps. We found four regions on three
chromosomes (14q32, 18p11-q21, 18q21-22, and 19q13) with LOD scores above 2.0, with a
maximum LOD score of 3.12, allowing for imprinting and sex-specific maps, at D18S1364 on 18q21.
While we obtained significant evidence of imprinting effects in both the 18p11-q21 and 19q13
regions when using sex-averaged maps, there were no significant differences between the
imprinted and non-imprinted LOD scores when we used sex-specific maps. Our results illustrate
the importance of allowing for gender-specific effects in linkage analyses, whether these are in the
form of gender-specific recombination frequencies, or in the form of imprinting effects.

Background
Genomic imprinting is the inactivation of a genomic seg-
ment depending on the sex of the parent from which it
was inherited. Imprinting may play an important role in
the inheritance of complex traits in humans. It has been
shown by previous studies that incorporation of imprint-
ing into linkage analysis may improve the power of vari-
ance component methods for detecting quantitative trait
loci [1,2]. However, Shete and Amos [1] advise caution in
using imprinted analyses, since they require larger sample
sizes than non-imprinted analyses. This difference
increases as the distance from the quantitative trait locus
increases, and as the imprinting effect decreases [1]. On
the other hand, where there is a large imprinting effect,

using non-imprinted analysis may reduce power to detect
linkage.

We decided to analyze linkage of normal adult height
because imprinted genes are involved in growth and
development [3]. Further, height is easily and reliably
measured, and stable within a certain age range. Height is
also highly heritable, with h2 values ranging from 0.5 to
0.8 [4-8]. Although our analysis cannot prove that incor-
poration of imprinting improves linkage analysis, it has
the prospect of identifying new regions linked to height.
Since sex-specific maps may be more appropriate in this
type of analysis [1], we selected the four chromosomes
that produced the highest imprinting LOD scores with
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sex-averaged maps, and reanalyzed them using sex-spe-
cific maps.

Methods
Subjects
The Framingham Heart Study, which started in 1948, is a
longitudinal study designed to evaluate the multifactorial
nature of cardiovascular disease. The original cohort, col-
lected in 1948, contained adult members from about two-
thirds of the homes in Framingham, Massachusetts. In
1971, a second offspring cohort was included in the study,
about three-fifths of which are the biological offspring of
the original cohort. A more detailed description of these
two cohorts is available in previous publications [9,10].
We analyze here the Framingham Heart Study data as
made available to the Genetic Analysis Workshop 13. Our
research was approved by the University of Pittsburgh
Institutional Review Board (IRB protocol number
020481).

For both cohorts, observers measured and recorded mul-
tiple anthropomorphic measurements, at periodic exami-
nations over the duration of the study, at two-year
intervals for the original cohort, and at four-year intervals
for the offspring cohort. Height measurements were taken
with participants standing erect, with heads in the Frank-
fort plane. For the original cohort, height was measured at
biennial examination 1 (in 1948), 5, 10, 13, and then at
every subsequent examination onwards. For the offspring
cohort, there was approximately an 8-year gap between
the first exam (in 1971–1974) and the second exam; sub-
sequent exams were given every 4 years.

Data cleaning and phenotype definition
We examined the 2885 individuals who had multiple
height measurements. Each individual's height measure-
ments were compared in a pair-wise fashion for devia-
tions greater than 2.0 inches. Where a single unique
measurement was deviant from all others, this measure-
ment was removed, along with its corresponding exami-
nation age. There were 22 such individuals. If we were
unable to identify a unique deviant, we set that individ-
ual's height and age to unknown for the rest of the analy-
sis. Only 12 individuals were zeroed out in this fashion.

For each individual with known height measurements, we
first computed a mean adult height measurement
between the ages of 20–60 years, and a mean adult age of
examination. Linear regression was performed to elimi-
nate gender and age effects. Since there is evidence of
change in the population distribution of height in the last
few decades, we also regressed mean height against dec-
ade-of-birth for each individual. The residuals resulting
from the linear regression of height against gender, mean-
age, and decade-of-birth were converted into z-scores,

which were used as the trait phenotype for linkage
analysis.

Variance components with parent-of-origin effects
In order to incorporate imprinting, we have to include
separate major-gene components for each parent. If we
assume purely additive variance, the variance-covariance
matrix Ω is:

Ω = ΠMOσ2
aMO + ΠFAσ2

aFA + 2Φσ2
G + Iσ2

e,

where ΠMO is a matrix containing the estimated propor-
tion of maternal alleles shared identically by descent
(IBD), ΠFA is a matrix containing the estimated propor-
tion of paternal alleles shared IBD, Φ is the kinship
matrix, and I is an identity matrix. Here, we are partition-
ing the variance into four components: an additive com-
ponent (σ2

aMO) due to the effect of a maternally derived
allele linked to the region of interest, an additive compo-
nent (σ2

aFA) due to the effect of a paternally derived allele,
a polygenic component (σ2

G), and an environmental
effect (σ2

e). As a simplifying assumption, we ignore the
effects of shared environment. We computed five different
likelihoods on our pedigree data:

L(σ2
aMO = 0, σ2

aFA = 0, σ2
G, σ2

e): No major gene effect.
(1)

L(σ2
aMO = σ2

aFA, σ2
G, σ2

e): Non-imprinted, where σ2
aMO

and σ2
aFA are constrained to be equal.  (2)

L(σ2
aMO = 0, σ2

aFA, σ2
G, σ2

e): Complete maternal imprint-
ing, σ2

aMO = 0  (3)

L(σ2
aMO, σ2

aFA = 0, σ2
G, σ2

e): Complete paternal imprint-
ing, σ2

aFA = 0  (4)

L(σ2
aMO, σ2

aFA, σ2
G, σ2

e): Imprinted, i.e. σ2
aMO, σ2

aFA≥ 0
(5)

We tested for linkage at each marker for equations (2–5)
by comparing its log-likelihood against that of the poly-
genic equation (1) using the likelihood ratio test. LOD
scores were also computed by dividing the likelihood
ratio by 2ln(10). We also examined evidence for imprint-
ing by comparing the log-likelihood of the non-imprinted
model to that of the imprinted model.

Linkage analysis
Linkage analysis was performed on 330 extended pedi-
grees containing 4692 individuals. SIMWALK2 version
2.83 [11] was used for multipoint IBD estimation [12] on
the complete extended pedigree structures. SIMWALK2
returned sharing estimates for the 15 possible detailed
identity states, from which we derived estimates of
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maternal and paternal IBD sharing for all the parent-off-
spring pairs and sibling pairs. The variance-component
imprinting models described above are currently only
applicable to nuclear families; therefore, the extended
pedigrees were broken down into their nuclear compo-
nents for the variance components analyses. Variance
components linkage analysis was performed using
FISHER [13] driven by our own imprinting module,
which computes the likelihoods described above. All map
distances are in Kosambi centimorgans.

Results
Regression and phenotype distribution
Height is dependent on gender, decade-of-birth, and age
as follows: βgender = -5.40, βdecade-of-birth = 0.045, and βage =
-0.01, with R2 = 0.5521. Gender and decade-of-birth
effects are significant at the 0.01 level. The residuals are
distributed normally with a mean of 0.00, standard devi-
ation of 2.58 inches, skewness 0.094, and kurtosis = -
0.174. The Shapiro-Wilkes test statistic is 0.99 with a p-
value of 0.08. After conversion to z-scores, there are only
five outliers, two individuals with z-scores less than 3.0,
and three with scores larger than 3.0. These individuals
were excluded from the linkage analysis.

Highest imprinting LOD score per chromosomeFigure 1
Highest imprinting LOD score per chromosome Chromosomes analyzed with sex-averaged maps.
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Linkage analysis results
We considered markers with LOD scores at or above 2.0 as
being of possible interest (Figure 1). (However, note that
for non-imprinted LOD scores, a LOD of 2 has an asymp-
totic p-value of approximately 0.0012, while for
imprinted LOD scores, a LOD of 2 has an asymptotic p-
value of approximately 0.0037.) Conventional analyses
(e.g., not modelling sex-differences or imprinting) iden-
tify two regions, 14q32.2 and 18q21.3-22.1 (Table 1).
Allowing for imprinting while using sex-averaged maps
identifies an additional region, 18p11-q21.1, with a LOD
score above 2.0 (Table 1). Using sex-averaged maps, we

observe significant evidence of imprinting in two regions,
18p11-18q21.1 and 19q13.3-19q13.4. Three regions con-
tinue to give linkage signals when we allow for sex-specific
maps without imprinting, although the 14q32.2 maxi-
mum LOD score drops to 1.99 (Table 1). When we allow
for imprinting and sex-specific maps, we add a fourth
region, 19q13.3-13.4, with LOD scores above 2.0, and we
obtain our highest LOD score of 3.12 at D18S1364 (Table
1, Figure 2). When we use sex-specific maps, we no longer
see any significant evidence of imprinting when we con-
trast the imprinting LOD score with the non-imprinting
LOD score (Table 1). However, at D18S542 we have sig-

Table 1: Regions with LOD scores ≥ 2.0A

Genetic distances (cM) Sex-Averaged Map LOD 
Scores

Sex-Specific Map LOD 
Scores

Chromosome Marker, 
Female:Mal

e Ratio

Sex-
Average

Female Male Non-
Imprinted

Imprinted Non-
Imprinted

Imprinted

14q32.2
D14S1434 0.24 0.32 0.17 0.23

0.53 13 9 17
D14S1426 2.01 2.27 1.99 2.01

18p11-18q21.1
D18S976 0.26 0.31 1.60 1.62

0.67 15 12 18
D18S843 0.23 0.97 1.77 2.18

2.38 13 19 8
D18S542 0.57 1.95B 2.15 2.90

25.00 13 25 1
D18S877 1.26 2.08 2.53 2.99

9.00 10 18 2
D18S535 1.00 1.86B 2.13 2.75

2.8 11 14 5
D18S851 0.22 1.10B 1.64 2.05

1.80 5 9 5
D18S858 0.23 0.93 1.62 1.97

18q21.3-18q22.1
D18S858 0.23 0.93 1.62 1.97

7.50 9 15 2
D18S1357 0.50 1.09 1.80 2.01

1.50 8 9 6
D18S1270 1.99 2.61 2.72 2.87

1.00 2 3 3
D18S1364 2.26 2.81 2.97 3.12

2.00 8 10 5
ATA82B02 1.26 1.51 2.33 2.40

1.71 9 12 7
D18S1371 0.28 0.33 1.37 1.55

19q13.3-19q13.4
D19S246 0.02 0.95 1.16 1.47

0.46 10 6 13
D19S589 0.22 1.45B 1.81 2.10

0.29 13 6 21
D19S254 0.56 1.12 1.88 2.12

AMarkers for which any LOD score was greater than 2.0. BImprinted locus (significance level ≤ 0.05).
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nificant evidence of maternal imprinting due to the large
difference between the imprinting LOD score and the
mother-only imprinting LOD score (Figure 2). Region
19q13.3-19q13.4 has significant imprinting effects at
D19S589 if sex-averaged maps are used (Table 1, Figure
3). However, these imprinting effects are not significant
when sex-specific maps are used-note how close to each
other the non-imprinted and imprinted LOD scores are at
D19S589 when sex-specific maps are used (Figure 3).

Discussion
Several genome-wide linkage analysis studies have
attempted to pinpoint the genetic factors that control
height. A study on Pima Indians showed evidence of a
locus on chromosome 20 [14]. Other studies found evi-
dence of linkage of height on chromosomes 6, 7, 12, and
13 [15], and on chromosomes 7 and 9 [16]. More
recently, evidence for linkage was found on chromosome
3 [17]; and evidence for linkage was observed on chromo-
somes 6q25, 9p1, and 12q1 [18]; and on chromosomes
5q31, Xp22, and Xq25 [19]. None of these studies consid-
ered imprinting effects or used sex-specific genetic maps.
Our study was unable to replicate any of these regions,
however, we obtained a LOD score of 1.94 at marker

D6S503 in the 6q27 region with imprinting on sex-spe-
cific maps, close to regions linked to height in two other
studies [15,18]. It is interesting to note that the estrogen
receptor 1 (ESR1) gene is close to this region.

We explore here the impact of carrying out linkage analy-
ses while allowing for sex-specific map differences and
imprinting. If the male recombination fraction (θm) is not
equal to the female recombination fraction (θf), then a
test that assumes θm = θf will be invalid. Furthermore, in a
region of true linkage, such map misspecification results
in loss of power to detect linkage [20]. Hanson et al. [2]
found by simulation (as confirmed by analytical analyses
by Shete and Amos [1]) that testing for imprinting effects
while erroneously assuming θm = θf can increase the type I
error rate of the imprinting LOD score, but that these
increases are modest if the female:male map-distance
ratio is ≤ 5:1. In our study, using sex-averaged maps, we
obtained significant evidence of imprinting in precisely
those regions with large differences between the male and
female genetic distances (Table 1). After we accounted for
the sex-specific map differences, then we no longer had
significant evidence for imprinting effects, and the most
parsimonious explanation of our data is linkage without

Chromosome 18 LOD scores with sex-specific mapsFigure 2
Chromosome 18 LOD scores with sex-specific maps LOD scores at each marker have been joined to produce contin-
uous curves. Map distances on X-axis are from the sex-averaged map.

0 20 40 60 80 100 120

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Genetic distance (cM)

LO
D

 s
co

re

Non−imprinted
Mother−only
Father−only
Imprinted

G
A

T
A

17
8F

11

D
18

S
48

1

D
18

S
97

6

D
18

S
84

3

D
18

S
54

2

D
18

S
87

7

D
18

S
53

5

D
18

S
85

1

D
18

S
85

8

D
18

S
13

57

D
18

S
12

70

A
T

A
82

B
02

D
18

S
13

71
Page 5 of 7
(page number not for citation purposes)



BMC Genetics 2003, 4 http://www.biomedcentral.com/1471-2156/4/s1/S76
any imprinting. The linkage signals are strongest when we
properly model the male and female recombination frac-
tions by using sex-specific maps. However, it is important
to point out that detection of imprinting effects requires
large sample sizes, and that region 18p11-q21, where our
highest LOD scores were obtained, is known to contain
imprinted genes [21].

It may not be appropriate to ignore dominance effects as
we have in our variance components models. In addition,
Spencer [22] shows that the covariance should include an
interaction between the dominance and additive terms in
the presence of imprinting.

Conclusions
Most previous variance components-based analyses
[23,24] testing for linkage while allowing for imprinting
have been limited in that sex-specific maps have not been
used in the analyses, mainly due to computational diffi-
culties. The combined use of SIMWALK2 [11] and FISHER
[13] permits incorporation of sex-specific maps into the
analyses. As Shete and Amos [1] point out, "in the
imprinting-testing model, it is important to include this
difference between the male and female recombination
fractions."
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