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Abstract
This paper presents a method of performing model-free LOD-score based linkage analysis on
quantitative traits. It is implemented in the QMFLINK program. The method is used to perform a
genome screen on the Framingham Heart Study data. A number of markers that show some
support for linkage in our study coincide substantially with those implicated in other linkage studies
of hypertension.

Although the new method needs further testing on additional real and simulated data sets we can
already say that it is straightforward to apply and may offer a useful complementary approach to
previously available methods for the linkage analysis of quantitative traits.

Background
Previously available methods of linkage analysis of quan-
titative traits applicable to complex pedigrees have con-
sisted of variance components analysis [1-4], or regression
analysis [5-7]. Although classical LOD score analysis of
quantitative traits could be implemented using the origi-
nal LINKAGE programs [8], doing so would have required
full specification of the transmission model which would
not generally be known. We have previously described a
model-free LOD-score based method of linkage analysis
applicable to dichotomous traits and implemented in the
MFLINK program [9], and here we describe a develop-
ment which allows its application to quantitative traits.

The Framingham data set includes genotypic data and
phenotypic measures related to traits including blood

pressure, characterized in a large set of complex pedigrees.
Previously it has been investigated for linkage using the
variance components method, producing a number of
interesting results including a multipoint LOD score of
4.7 using a treatment-adjusted measure for blood pressure
with markers on chromosome 17 [10]. Genome-wide
linkage scans for blood pressure have also been carried
out in a number of other data sets [11-16].

The present study describes the application of the new
method of model-free linkage analysis of a quantitative
trait to a measure of blood pressure obtained from the
Framingham data set.
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Methods
The model-free method of linkage analysis that we present
assumes that a susceptibility locus may have an effect on
the trait in question such that a bi-allelic polymorphism
exists with genotypes AA, Aa, and aa. The trait values for
subjects having these genotypes have means MAA, MAa,
and Maa, with a constant variance of the measure around
each genotype-specific mean VAA = VAa = Vaa. A model of
heterogeneity is assumed, whereby the susceptibility locus
exerts its effect in a proportion α of families while an
unlinked locus exerts the same effect in the other families.
For the purposes of analysis we assume equal frequencies
for the two alleles and also constrain the genotype-specific
means for the first two genotypes to be equal so that MAA
= MAa. This might be thought of as saying that the A allele
exerts a dominant effect. The genotype aa with mean Maa
is therefore less common, with frequency 0.25. Defining
the overall population variance as V and the standard
deviation as S = √V, then we set a variable T = (Maa - MAA)/
S as a measure of the displacement between the genotype-
specific means. There are limits for T at which the dis-
placement between these means will be so large as to
completely account for the overall population variance of
the trait with zero variance around each mean (VAA = VAa
= Vaa = 0), and between these limits it is straightforward to
calculate a value for the variance around each genotype-
specific mean (VAA = VAa = Vaa) that will produce the cor-
rect overall population variance, V. We allowed T to take
a range of values ranging from -2 to 2. At the extreme val-
ues of Maa = MAA - 2S and Maa = MAA + 2S the fraction of the
overall variance explained by the difference in genotype-
specific means is 75%, while this fraction decreases
towards zero as the absolute value of S approaches zero.
We set further parameters θ and α as follows. We write θ =
t to imply the trait locus is at the test position, which may
be on a multipoint map, and θ = 0.5 to indicate it is
unlinked to any markers. We write α to be the proportion
of families in which the trait locus exerts an effect, with
the assumption that in proportion 1 - α of families an
unlinked locus elsewhere exerts a similar effect. We then
generate a range of transmission models by varying T from
-2 through 0 to 2 and for each model we calculate three
likelihoods which are functions of T, θ, and α:

LUNLINKED = L(θ = 0.5 or α = 0, T)

LLINKED = L(θ = t, α = 1, T)

LHET = L(θ = t, α, T) where LHET is maximized over α.

Three LOD scores are then defined as:

MLOD = log10(max [LLINKED/LUNLINKED]) - maximized over
T

MALOD = log10(max [LHET/LUNLINKED]) - maximized over
T and α

MFLOD = log10(max [LLHET]/max [LUNLINKED]) - numera-
tor maximized over T and α, and denominator independ-
ently maximized over T.

These LOD scores are equivalent to those produced by the
MFLINK program and the associated likelihood ratio sta-
tistics, calculated as 2ln(10)LOD (where ln(10) means the
natural log of 10), are asymptotically distributed as chi-
squared statistics as follows under the null hypothesis of
the test locus exerting no effect on the quantitative trait
(MAA = MAa = Maa or α = 0). 2ln(10)MLOD is distributed
as x 2

1; 2ln(10)MALOD is distributed as a 50:50 mixture
of x 22 and x 20; and 2ln(10)MFLOD as a 50:50 mixture of
x 21 and x 20. The new method has been implemented in a
computer program called QMFLINK.

The blood pressure trait was defined using a method sim-
ilar to that used previously [10] except that it was not pos-
sible to correct for treatment effects because the relevant
measures regarding response to treatment, which were
derived from additional subjects not included in the sam-
ple, were not made available to us. Therefore, blood pres-
sure measurements from subjects on treatment were dealt
with in the same way as for those on no treatment. Data
were extracted from the original cohort and the offspring
cohort phenotype data sets. The mean systolic blood pres-
sure was calculated over all measurements obtained at
each visit attended by the subject for all subjects with at
least 10 years between initial and final visit and who
attended at least five visits in the original cohort and three
visits in the offspring cohort. The mean body mass index
(BMI) was also calculated, obtained from mean height
and mean weight. For the two data sets and two genders,
separate regression analyses were performed whereby the
mean systolic blood pressure was regressed against BMI
and age. The residuals were then standardized and used as
a quantitative measure of systolic blood pressure cor-
rected for BMI, age, gender, and cohort.

We carried out a genome scan using the corrected measure
of systolic blood pressure by applying two-point model-
free quantitative trait linkage analysis for each marker pro-
vided across the 22 chromosomes.

Results
Table 1 displays the MLOD, MALOD, and MFLOD scores
for all markers in which at least one of those values was
statistically significant at ≤ 0.02 (as suggested by Rao et al.
[17]). (All individual values that reached this level are in
bold.) Positions in cM are those given by the Genetic
Analysis Workshop 13 map files that are in turn derived
from information on the Marshfield web site.
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Discussion
We compared our results with those from other linkage
studies of hypertension [10-16]. Of particular interest
were those published by Levy et al. [10] because they ana-
lyzed the same data set. All but one of the results support-
ing linkage to systolic blood pressure reported by this
group were replicated in our own analysis. On chromo-
some 17 LOD scores of 3.8 and 3.1 at markers
GATA25A04 and ATC6A06 reported by Levy et al. [10]
correspond to the MLODs of 2.1 and 1.7, which have p-
values of < 0.01 in our analysis. Furthermore, the marker
GATA64A09 on chromosome 10, which has a LOD score
of 2.0 in the study by Levy et al. [10] has an MLOD of 1.2
with a p-value of 0.02 in our analysis. The only result not
replicated was their LOD of 2.0 on chromosome 5 at 59
cM, although we do have a marker with an MALOD of 1.4
(p = 0.02) at 20 cM.

A number of markers that we find to show some support
for linkage seem to coincide with regions implicated in
other linkage studies of hypertension. The distal region of
chromosome 17 highlighted by our analysis has provided
evidence of linkage in an affected sibling pair study by Jul-
ier et al. [18]. The positive results we detect with the more
proximal markers at 24 cM and 49 cM on this chromo-
some could reflect the effect of the same gene as detected
by Xu et al. [12] and Rutherford et al. [19], who both
found evidence for linkage at 33 cM.

The MLOD of 1.3, MALOD of 1.4, and MFLOD of 0.9 (all
p = 0.02) at 63 cM on chromosome 16 correspond with a
region implicated to contain a low blood pressure QTL
[12]. Finally, it is possible that the marker at 111 cM on
chromosome 6 with an MLOD of 1.1 (p = 0.02) may
reflect the effect of the same locus as was implicated in a
study by Krushkal et al. [11], who found evidence for link-
age significant at p = 0.0001 in the interval 141–153 cM.

We are not aware of any other published papers that
report evidence of linkage to the specific regions on chro-
mosomes 4, 5, and 8 where we have positive results. It is
possible that the results from chromosome 5 and 8 as well
as the result previously discussed result on chromosome 6
correspond to those from the MRC BRIGHT study [16]
but at the time of writing only approximate locations for
the putative QTLs highlighted by this study have been
published.

Conclusions
The new method of analysis has been applied to a large
sample of complex pedigrees, some containing loops. The
results overlap to some degree with those obtained using
a variance-components method to analyze the same data
set. However we could not obtain an identical phenotypic
measure because we were unable to allow for treatment
effects. Thus we do not know the extent to which differ-
ences in the methods of analysis and differences in quan-
titative measures account for differences between our
results and those obtained in the previous analysis. It is of
interest that our analysis also provides some evidence for
linkage in areas that were not highlighted in the previous
analysis, some at least of which seem to be supported by
the results of other studies. Of course, we cannot be sure
which results are true- or false-positives until the genetic
basis of hypertension has been fully elucidated.

Analogously to the MFLINK program, the method can be
described as "model-free" in that one does not need to
specify in advance one particular inheritance model, but
rather a range of models is considered. It is expected that
if the true inheritance model is reasonably close to one of
these then the method will be able to detect linkage when
it is present, but if this were not the case then the method
might lack sensitivity. Testing of MFLINK demonstrated
that it had good ability to detect linkage under a variety of
different conditions. The new method generates three

Table 1: MLOD, MALOD, and MFLOD scores

Chromosome Locus Name Position (cM) MLODA MALODA MFLODA

4 GATA5B02 236 2.0 (0.003) 2.2 (0.004) 1.3 (0.01)
5 GATA3A04 20 0.7 (0.08) 1.4 (0.02) 0.7 (0.04)
6 GATA30A08 111 1.1 (0.02) 1.1 (0.04) 0.3 (NS)
8 GATA72C10 41 1.6 (0.01) 1.6 (0.01) 0.9 (0.02)
10 GATA64A09 137 1.2 (0.02) 1.2 (0.03) 0.5 (0.06)
16 GGAA3G05 64 1.3 (0.02) 1.4 (0.02) 0.9 (0.02)
17 GATA8C04 24 0.3 (NS) 1.6 (0.01) 0.2 (NS)
17 GATA185H04 49 1.2 (0.02) 1.2 (0.03) 0.0 (NS)
17 GATA25A04 67 2.1 (0.002) 2.1 (0.004) 0.7 (0.04)
17 ATC6A06 72 1.7 (0.005) 1.7 (0.01) 0.8 (0.03)

AScores along with their associated p-values for all markers in which at least one of those values was statistically significant at ≤ 0.02.
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different statistics, the MFLOD, MLOD, and MALOD. In
general these will tend to be positively correlated but for a
given marker one statistic may be more highly significant
than the others. This could occur through chance or might
happen when the test more accurately modelled the true
biological situation. Having three partially independent
statistics makes the overall interpretation of significance
more problematic, but most users will probably wish to
examine all three in order to avoid overlooking a poten-
tially true positive result.

In order to determine the utility of the new method it will
need to be thoroughly tested on a large number of real
and simulated data sets. For now, we can say that the
method is straightforward to apply and may offer a useful
complementary approach to previously available meth-
ods for the linkage analysis of quantitative traits.
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