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Abstract
There are no well accepted criteria for the diagnosis of the metabolic syndrome. However, the
metabolic syndrome is identified clinically by the presence of three or more of these five variables:
larger waist circumference, higher triglyceride levels, lower HDL-cholesterol concentrations,
hypertension, and impaired fasting glucose. We use sets of two or three variables, which are
available in the Framingham Heart Study data set, to localize genes responsible for this syndrome
using multivariate quantitative linkage analysis. This analysis demonstrates the applicability of using
multivariate linkage analysis and how its use increases the power to detect linkage when genes are
involved in the same disease mechanism.

Background
It has been shown that for correlated traits, multivariate
approaches for genetic linkage analyses can increase the
power and precision to identify genetic effects [1-4].
When correlated measures are considered, the composite
score from joint consideration of all measures reflects a
smaller level of measurement error than each of the uni-
variate measures [5]. Then, multivariate analysis provides
a statistically efficient mechanism for controlling the anal-
ysis-wise significance level when there are multiple trait
observations for each subject [3,6]. Therefore, using meth-
ods that can analyze several traits jointly is likely to
enhance the ability to identify genes influencing the met-
abolic syndrome. Although multivariate Haseman-Elston
(H-E) [7] and variance-components (VC) methods [8]
have been available for several years, only recently has the
power of these methods been compared. Allison et al. [6]
presented results from a large simulation study to assess
the effectiveness of a bivariate H-E test for linkage versus
the univariate H-E test [9]. Their results showed that bivar-
iate analyses can improve the power to detect linkage,

with a greater gain in power when the genetic covariance
due to a major locus linked to the marker studied is nega-
tive and the residual covariance among the traits is posi-
tive. Amos et al. [3] also showed that bivariate approaches
are more powerful than univariate analyses except for
traits with very high positive polygenic correlation. Evans
[4] also reached similar conclusion.

Our approach is based on the assumption that it is easier
to detect a quantitative trait locus (QTL) involved in the
metabolic syndrome using multivariate linkage analysis.
Our aim is to show that using combinations of traits
related to the metabolic syndrome, and then using them
in multivariate linkage analysis software, gives reliable
results for linkage to genes associated with this syndrome.

Methods
The metabolic syndrome
There are no well accepted criteria for the diagnosis of the
metabolic syndrome. However, the metabolic syndrome
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is identified by the presence of three or more of the varia-
bles listed in Table 1[10].

Multivariate linkage analysis
The multivariate variance-components (MVC) approach
is an extension of the univariate approach described by
Amos [8]. For multivariate traits, let Yi =
(Y11,...,Y1ki,...,Ymki)' be a vector of m multivariate trait val-
ues for ki members of the ith family. Let N be the total
number of families, β a vector of dimension mp of the
regression coefficients for the p covariates (including a
vector of 1's corresponding to the overall mean), Xi =

Im Xki x m an mki × mp known matrix of covariate values

for the ith family, where  is the Kronecker product, and
Vi a VC matrix of dimension mki× mki. Then, the variance-

covariance matrix of the traits is Vi = A Gi + B Zi +

C Ii, where Gi is the ki × ki matrix of the coefficients of
relationship for the family i; Zi an ki × ki matrix of esti-
mated proportion of alleles identical by decent (IBD) for
pairs of related individuals for the ith pedigree; Ii is the ki ×
ki identity matrix; and A, B, and C, are, respectively, poly-
genic, major-gene, and environment variance-covariance
matrices each of dimension m × m. A more detailed
description of these models was presented elsewhere
[11,12].

Multivariate VC test
To test for genetic linkage, we also construct a likelihood
ratio test. Under the null hypothesis, the major gene
parameter(s) are restricted to equal 0. The distribution of
the multivariate test is a mixture of χ2 values [13]. For tri-
variate linkage analysis of an additive genetic effect, the
distribution of the trivariate test that the major-gene cov-
ariance components are zero is a mixture of 1/8 χ0

2, 3/8
χ1

2, 3/8 χ3
2 and 1/8 χ6

2. One-eighth of the time all the VCs
are estimated to be positive with all the covariances differ-
ent from 0 yielding 6 degrees of freedom. Three-eighths of

the time, one of the VCs is estimated to be zero with two
covariances fixed to zero (yielding 3 degrees of freedom).
Another three-eighths of the time two VCs are fixed to
zero with all covariances equal to zero yielding 1 degree of
freedom. Finally, one-eighth of the time all the variances
are fixed to zero resulting in a degenerate distribution of
point mass at zero.

For the multivariate linkage analysis, we use the following
four traits: triglycerides, HDL-cholesterol, systolic blood
pressure (SBP), and fasting glucose. Since these variables,
except for triglycerides, were measured at several time
points, we applied a similar regression approach
described in Levy et al. [14] for these four variables and
then used their residuals as the quantitative traits in the
multivariate genome-wide linkage analysis for quantita-
tive traits. There are two packages that use the MVC
approach: ACT [15] and EMVC [16]. The analyses here
presented were performed using the EMVC package using
330 families with 4692 individuals, of whom 1702 have
genotype information.

Results
We do observe small to moderate positive genetic correla-
tions between SBP and triglycerides (0.187), SBP and fast-
ing glucose (0.296), and triglycerides and fasting glucose
(0.361); we also observe a strong negative correlation
between HDL-cholesterol and triglycerides (-0.664), and
small to moderate negative correlations between HDL-
cholesterol and SBP (-0.048), and HDL-cholesterol and
fasting glucose (-0.249). Table 2 shows the pair-wise poly-
genic and the quantitative trait locus (qtl) correlation
among the four traits at the position where evidence for
linkage was found for the trivariate linkage analysis. We
observed moderate to strong polygenic and qtl correlation
for all traits except for polygenic correlation for SBP and
fasting glucose SBP and HDL-cholesterol on chromosome
6 at 152 cM.

Table 1: Clinical identification of the metabolic syndrome

Risk Factor Defining Level

Abdominal Obesity Waist Circumference
Men > 102 cm (> 40 in)
Women > 88 cm (> 35 in)

Triglycerides = 150 mg/dL
HDL cholesterol

Men < 40 mg/dL
Women < 50 mg/dL

Blood Pressure = 130/85 mm Hg
Fasting Glucose 110–125 mg/dL

⊗⊗

⊗⊗

⊗⊗ ⊗⊗

⊗⊗
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Figure 1 depicts the trivariate multipoint linkage analyses
results of chromosomes 2, 5, 6, and 17. Because of space
constraints we show only the trivariate results. The trivar-
iate lod scores were obtained using EMVC program [16].
On chromosome 2, the following combination produced
evidence for linkage: SBP, fasting glucose, and triglycer-

ides (LOD  5.37, position 136 cM, P = 5.4 × 10-5); HDL,

fasting glucose, and triglycerides (LOD  4.97, position
140 cM, P = 1.7 × 10-4); SBP, HDL, and fasting glucose

(LOD  4.42, position 38 cM, P = 5 × 10-4); SBP, HDL,

and triglycerides (LOD  3.70, position 38 cM, P = 1.5 ×
10-3). The univariate maximum LOD scores for SBP, trig-
lycerides, fasting glucose, and HDL were, respectively, 1.5
(34 cM), 1.75 (74 cM), 3.3 (136 cM), and 1.2 (38 cM). On
chromosome 5, the following combination produced evi-
dence for linkage: SBP, fasting glucose, and triglycerides

(LOD  5.24, position 30 cM, P = 7 × 10-5); HDL, fasting

glucose, and triglycerides (LOD  3.81, position 186 cM,

P = 1.2 × 10-3); SBP, HDL, and triglycerides (LOD  3.35,
position 34 cM, P = 2.8 × 10-3); SBP, HDL, and fasting glu-

cose (LOD  2.80, position 30 cM, P = 7.9 × 10-3). The
univariate maximum LOD scores for SBP, triglycerides,
fasting glucose, and HDL were, respectively, 2.21 (34 cM),
1.97 (0 cM), 1.53 (160 cM), and 0.16 (160 cM). On chro-
mosome 6, the following combination produced evi-
dence for linkage: SBP, fasting glucose, and triglycerides

(LOD  5.49, position 152 cM, P = 5 × 10-5); HDL, fast-

ing glucose, and triglycerides (LOD  5.30, position 152

cM, P = 6 × 10-5); SBP, HDL, and triglycerides (LOD 
5.18, position 152 cM, P = 1 × 10-4). The univariate maxi-

mum LOD scores for SBP, triglycerides, fasting glucose,
and HDL were, respectively, 0.12 (2 cM), 5.52 (152 cM),
0.64 (44 cM), and 0.25 (182 cM). On chromosome 17,
the following combination produced evidence for link-

age: SBP, fasting glucose, and triglycerides (LOD  3.02,
position 10 cM, P = 5.2 × 10-3); SBP, HDL, and triglycer-

ides (LOD  3.91, position 12 cM, P = 1.2 × 10-3). The
univariate maximum LOD scores for SBP, triglycerides,
fasting glucose, and HDL were, respectively, 1.35 (66 cM),
1.76 (6 cM), 0 (-), and 0.22 (126 cM).

Discussion
The MVC approach appears to perform well in the identi-
fication of regions linked to genes associated with traits
related to the metabolic syndrome, mainly on regions
where the QTL effects were negatively correlated and there
was a positively correlated polygenic effect as shown by
Amos et al. [3] and Evans [4]. Our results did identify a
minor linkage peak to the same region of chromosome 17
described by Levy et al. [14]. The only region on chromo-
some 17 using the trivariate VC approach that showed evi-
dence for linkage was on the surrounding region of 10 cM,
which was due primarily to the bivariate combination,

SBP and triglycerides, (LOD  3.14, position 12 cM,
results not shown). Furthermore, evidence for linkage was
also found on chromosomes 2, 5, and 6. We also showed
that the pair-wise combinations with evidence for linkage
are the ones that have either small to moderate genetic
correlation or negative genetic correlation. In summary,
the use of multivariate quantitative trait loci linkage
analysis can increase the power to detect a QTL. However,
this procedure is computationally intensive, i.e., the CPU

Table 2: Values of polygenic and QTL correlation between the variables involved in the metabolic syndrome at different locations

QTL Effects for Traits Polygenic Effects for Traits

TraitsA (1, 2, 
3)

Chr Pos (cM) LOD 1 and 2B 1 and 3 2 and 3 1 and 2C 1 and 3 2 and 3

S,G,T 2 136 5.37 0.409 -0.62 0.342 0.62 0.404 0.873
H,G,T 2 140 4.97 -0.81 -0.83 0.573 -0.18 -0.64 0.858
S,H,G 2 38 4.42 0.557 0.25 -0.21 -0.54 0.565 -0.53
S,H,T 2 38 3.70 0.637 -0.32 -0.19 -0.57 0.592 -0.82
S,G,T 5 30 5.24 0.317 0.096 0.954 0.122 0.525 -0.58
H,G,T 5 186 3.81 0.078 0.683 0.122 -0.7 -0.97 0.802
S,H,G 5 30 2.80 0.602 0.138 0.235 -0.27 0.721 -0.59
S,H,T 5 34 3.35 -0.14 -0.15 0.149 -0.06 0.643 -0.74
S,G,T 6 152 5.49 0.084 0.405 0.799 0.32 0.289 0.69
H,G,T 6 152 5.30 -0.03 -0.89 0.365 -0.27 -0.84 0.59
S,H,T 6 152 5.18 -0.37 0.33 -0.91 0.003 0.19 -0.87
S,G,T 17 10 3.02 0.477 -0.33 0.308 0.331 0.727 0.44
S,H,T 17 12 3.91 0.694 -0.34 -0.08 -0.35 0.622 -0.90

AS, systolic blood pressure; G, fasting glucose; T, triglycerides; H, HDL-cholesterol.

≅
≅

≅
≅

≅
≅

≅

≅

≅
≅

≅

≅

≅

≅

Page 3 of 5
(page number not for citation purposes)



BMC Genetics 2003, 4 http://www.biomedcentral.com/1471-2156/4/s1/S57
time increases exponentially as the number of traits
increases additively.
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