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Abstract

Background: We propose a statistical method that includes the use of longitudinal regression
models and estimation procedures for adjusting for covariate effects in applying the Haseman-
Elston (HE) method for linkage analysis. Our methodology, which uses the covariate adjusted trait,
contains three steps: a) modelling the covariate-adjusted population means of quantitative traits
through regression; b) estimating the value of covariate-adjusted quantitative traits; and c)
evaluating the linkage between the adjusted trait values and the markers based on alleles shared
identically by descent.

Results: We applied our adjusted HE method and the standard HE method in S.A.G.E. to the sib-
pair subset of the Framingham Heart Study distributed by Genetic Analysis Workshop 13 with
systolic blood pressure as the quantitative trait. Both methods gave similar patterns for the LOD
scores, and exhibited highest multipoint LOD scores near location 70 cM of chromosome 12.

Conclusion: The adjusted HE method has two major advantages over the standard HE method
used in S.A.G.E.: a) it has the capability to handle longitudinal data; b) it provides a more natural
approach for adjusting the repeatedly measured covariates from each subject.

Background Suppose that, in addition to the genetic and environmen-
Let X;;and X;; be the observed trait values for the firstand  tal effects, the phenotype X;; is also affected by a set of p
second sibs in a cross-sectional study, and let Y; = (X;; - ) (1) "
X,;)? be the squared trait difference in the jt sib pair. The covariates. Let Zij be the value observed for the I cov-
Haseman-Elston (HE) method [1] assumes that ariate in the (i, j)hsib (j=1,2;i=1,...n; 1 = 1,...,p). Given

the proportion of genes identical by decent (IBD), =; for
Xij= 1+ &+ ey, (1)
the jth sib pair and covariates Zl(jl),...,Zl(jp) for the (i, j)th
sib, Elston et al. [2] described the genetic and covariate
effects on the phenotype through the linear model

p
A0 ot S04}
I=1

where i = 1,2, p is the overall mean trait value, and g; and
e;, which are independent and have mean zero, represent
the genetic and environmental effects, respectively, on the
ith sib of the jth sib pair [denoted by the (i, j)t sib

hereafter]. E( Yj
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where Z(l) is a transformed covariate determined by

]
Zijl-) and Zglj) , Bo describes the linkage between the phe-
notype and the marker alleles, and B,,..., 3, represents the
covariate effects. Estimation and inference procedures
based on equation (2) have been incorporated into the
software package SIBPAL in S.A.G.E. [3].

In practice, however, there are two potential limitations
for the method based on equation (2). First, since the
model and its estimation procedures currently used in
S.A.G.E. [3] are designed only for cross-sectional studies,
they are generally not suitable for longitudinal studies
where the data are repeatedly obtained over time. Second,
in some situations it may not be appropriate to select
1

A0 AP
data set, so that an adequate implementation of equation
(2) depends on choosing a sensible transformation
applied to the original covariates. To overcome these
shortcomings, we propose in this paper an alternative sib-
pair approach that can be applied to longitudinal studies
and that adjusts the covariates prior to linkage analysis.
The approach of adjusting covariate prior to linkage anal-
ysis has been previously considered in the literature under
some different contexts (e.g., Amos [4] and Suh et al. [5]).
Our method is focused on combining the HE method
with statistical procedures for covariate adjustment using
the generalized estimating equations (GEE) and within-
cluster resampling [6-8] and contains three main steps: a)
modelling the covariate-adjusted population means of
quantitative traits through regression; b) estimating the
covariate-adjusted quantitative traits; and c) evaluating
the linkage between the adjusted trait values and the
marker alleles shared IBD. The objective is to link pheno-
type with the proportion of genes shared IBD using only
the trait values after removing the influences of the covari-
ates that are unrelated to the genes. Numerical computa-
tions of our method can be easily implemented using the
existing statistical and genetic software packages, such as
SAS (SAS/STAT Software [9]) and SIBPAL (S.A.G.E. [3]).

as the original covariates observed in the

Applying our method and the standard HE method (equa-
tion (2)) in S.A.G.E. to the Genetic Analysis Workshop 13
Framingham Heart Study data, we found that both meth-
ods gave similar results for cross-sectional analyses using
only the data from one visit, and exhibited highest
multipoint LOD scores near location 70 ¢cM of chromo-
some 12 for the longitudinal analyses. Our method is
more natural at handling the longitudinal data and has
generally higher peak multipoint LOD scores than the
standard HE method.

http://www.biomedcentral.com/1471-2156/4/s1/S51

Methods

Modelling the covariates

For cross-sectional studies, we assume that the covariates
are not affected by the genes and generalize equation (1)

. .
Xl] = Xl] —H(Zl(] ),,Zl(]p),W)z gl] +eij’ (3)

1 . . .
where u(Zl(j ),...,Zl(-jp );\p ) is the expectation of X;; given
the covariates Zlg.l) and the unknown (p + 1) dimensional
parameter y, and X; is the covariate adjusted trait for the

(i, j)t sib. When p(-;-) is a simple linear link function,
the value of the covariate adjusted phenotype is

. (D)
Xij = X5 - W0+Z(\I’lzij ) (4)

I=1

where y = (y,,...,y,) are the linear coefficients.

For longitudinal studies, let n; be the number of repeated
i be the time of the kth

measurement for the (i, j)th sib. Assume that the condi-
tional expectation of X, given the covariate vector

(1) (r) ). 1 L
(Tijk’zijk ""'Zijk is u Tijk'Zz(jk)""'Zng);W , which is
determined by the (p + 2) dimensional parameter y and
holds for all the measurement points. Assume further that

the gene effects on the quantitative trait values are the
same for all the measurement points. By adjusting the

measurements and Ty, k = 1,...n

time-dependent covariates Zl(ji) , we have the longitudinal
model

* 1 p .
Xijk = X’]k - }l( Tl]k’Zl(]k)’/Zlgk ) :W ): gq + eij~ (5)

Then the linear model with coefficients yy,...,y,, ; is

P
. !
Xijk = Xije —l:\Vo + 1T +2(‘I’Z+1Z§jk) ﬂ = 8ij + & (6)
=1
Methods for cross-sectional studies
Using the covariate adjusted squared trait difference
* * * 2 . . .
Yj = ( X1j— X5, ) , the same derivation as in Table 1 of

HE [1] shows that

E(Y;|1t]~)=(x+[3nj, (7)

and the problem of linkage detection reduces to testing
the statistical hypothesis of = 0 (no linkage) versus the
one-sided alternative B < 0 (linkage). If there were a con-

sistent estimate i\ for vy, then X; and Yj* can be esti-

Page 2 of 8

(page number not for citation purposes)



BMC Genetics 2003, 4

mated by }2; = Xjj —H(Zl(jl),...,Zl(jp);ﬁf) and

o 3 o 3 A % 2
Y = ( X1j — Xaj ) , respectively. The hypotheses f = 0
and B < 0 can be tested using the standard HE procedure

with 1}]* as the observed squared trait difference.

Since the sibs in the same family are correlated, there are
two approaches that can be used to estimate . The first is
to treat the families as independent subjects and apply the
existing longitudinal methods, such as the generalized
estimating equations (GEE, e.g., [6,10]) to the observed
traits. The second approach is within-cluster resampling
[7,8], which first generates multiple independent resam-
pled data sets by randomly drawing one sib from each
family, estimates y from each resampled data set using the
existing estimation methods for independent cross-sec-

tional data, and finally computes \y by averaging the esti-
mates computed from all the resampled data. When the
number of families is large, both approaches are expected
to lead to consistent estimates.

Methods for longitudinal studies
We assume here that both sibs in a pair have the same
number of repeated measurements, i.e., nyj=ny=1; for all

j. The adjusted squared trait difference at the kth measure-
. « . \2
ment for the jth pair is Y, = ( Xijr = Xojk ) , and averag-

ing over all the measurements, the average adjusted
squared trait difference for the jth pair is

I n; * . .
Y] :Zklzl(yjk/"j)' Then equation (7) continues to

hold if Yj* were replaced by 1_/]’.* , and, consequently, the

linkage between the phenotype and the marker loci can be
detected by testing 3 = 0 against B < 0. If there were a con-

sistent estimate 1\, we could estimate 17]7‘ by

5, ne s
Y; :Zklzl(ij/nj),where

Ak Ak Ak 2 Ak 1 p A
Yii = (lek _Xij) and Xjj = X _H(njkfzgjk)/-wzgjk)?e )

and the standard HE procedure would be implemented

using f/; as the observed squared trait difference for the

jth pair.

The estimation of y is now affected by two sources of cor-
relations: the correlation between the repeated measure-
ments within a sib and the correlations between sibs
within the same family. Ideally, it is possible to model

http://www.biomedcentral.com/1471-2156/4/s1/S51

these correlation structures and incorporate these correla-
tion models into an established longitudinal estimation
procedure, such as GEEs. But the potential bias and varia-
bility that may be associated with the possible model mis-
specifications of this approach have not been well
studied. As a practical alternative, we suggest the follow-
ing three-step within-cluster resampling procedure: a)
randomly sample one sib from each family; b) estimate y
from the resampled data using GEE; and c) repeat the

above steps multiple times and calculate vy by averaging
the estimates from all the resampled data sets. When the

number of families is large, \y is expected to be a consist-
ent estimate of y [7,8].

Choosing correlation structures in GEE

An important issue in obtaining an appropriate value for
a covariate-adjusted phenotype is to select a suitable cov-
ariate structure for implementing the GEE procedure in
SAS or other statistical programs. For cross-sectional stud-
ies, equation (3) is equivalent to

1
Xij = I_L(Zl(] ),,ZI(]p),\I!)‘i‘ 81‘]‘,

where u(zl(jl)’_._,z(.p);\”) is the marginal mean of Xj

Y

given Zl(].l),m, Zz(jp ) and vy, and &j is the error term deter-

mined by the gene and the environment. This model falls
into the framework of marginal models of Diggle et al.
[[6], Ch. 7]. When GEE is used for estimating the
unknown parameter y of the marginal component, a suit-
able covariance structure that can be generally applied
with the PROC MIXED procedure in SAS [9] is the "com-
pound symmetry" model. Explicit mathematical
expression of the compound symmetric covariance struc-
ture is given by Verbeke and Molenberghs [[10], page
117]. Other covariance structures such as the ones
described in Diggle et al. [[6], Ch. 5] may also be consid-
ered when additional details about the error term g;; are

j
available.

For longitudinal studies, we can apply the GEE procedure
with the same compound symmetric covariance structure
as in Verbeke and Molenberghs [[10], page 117] to the
within-cluster resampled data with the marginal model

1)),
Xiji = M(Tijklzfjk),...,zgjk),qf )+ &,

so that consistent estimate \y for y in the marginal com-
ponent can be obtained. Since only one sib in a family is
randomly chosen in the resampled data, compound sym-
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metry is an adequate assumption for the correlation struc-
ture here.

Comparison with the standard HE method

Theoretically, our covariate-adjusted linear model (equa-
tion (7)) is equivalent to the standard HE model (equa-
tion (2)) if proper transformations for the original
covariates are used. To see this, we compare these models
for the cross-sectional data, as similar arguments can be
made for the case with longitudinal data. Let p; =

u( Zl(j1 ),..., Zl(jp ) W ) Assume, for simplicity, that the cov-

ariates Zz(jl)'"-' Zl(].p ) are non-random. (The same conclu-
sion for the random covariate case can be similarly
derived by taking conditional expectations given these
covariates, assuming that Zl(jl),_.,,Zl(jp ) are independent
of m;.) Direct calculation using the definitions of Y;and Yj*

then shows that

E( Yj* | m) = E(Y; | 1) - (Wyj- My)? =+ P (8)

When p; is a simple linear link function as given in the
second term at the right side of the equation (4), equation
(8) is clearly a special form of equation (2) with the cov-
ariates at the right side of equation (2) taken to be quad-
ratic and cross-product transformations of the original
covariates. When y;; is a nonlinear function of the original
covariates, suitable covariate transformations have to be
used to make equation (2) equivalent to equation (8). In
practice, however, it is often difficult to determine what
meaningful covariate transformation should be used in
equation (2). In our view, the appeal of equation (7) or its
equivalent, equation (8), compared to the standard HE
method is that the variations on phenotype contributed
by the nuisance factors (covariates unaffected by genes)
can be naturally modelled and adjusted before analysing
the gene effects.

Data

The second generation data from the Framingham Heart
Study distributed by the Genetic Analysis Workshop 13
contain 482 multi-sib families from a total of 576 nuclear
families from 330 pedigrees. We used all the possible sib
pairs from these families and the repeated measurements
from all their visits. For the purpose of illustration, we
specified systolic blood pressure (SBP) as the quantitative
trait, and the subject's age (in years), gender (O for female,
and 1 for male), and average daily alcohol consumption
(in milliliters) as the covariates of interest. The subjects
had up to five visits during the study, but not all the sub-
jects completed all five visits. Among a total of 1672 sub-

http://www.biomedcentral.com/1471-2156/4/s1/S51

jects that were included in the data set, the numbers of
subject who were measured at visits 1 through 5 were
1649, 1393, 1402, 1439, and 1377, respectively.

Implementation

Adjusted HE method

We assumed that the mean SBP conditioning on the sub-
ject's gender, and age and drinking level (ml/day) at the
visit was determined by

p (gender, age, drink; y) = y, + y; x gender + y, x age +
W3 x drink.

Using the three-step resampling procedure, we generated
1000 independent resampled data sets from the entire sib-
pair data that included all the observed visits, and com-

puted \y by averaging the GEE estimates obtained from
the resampled data sets using the compound symmetric
covariance structure. For each sib pair, we used the visits
in which the measurements were available for both sibs,
estimated the covariate adjusted SBP at the kth visit by

SBP;;, = SBP;, — u( gender;;, ageyy,, drinki,; ),

and computed the adjusted squared SBP difference by

— % . * * 2
Y] = ZZ;l(sm)ljk ~SBPy; )

where n; is the number of common visits for both sibs of
the jth sib pair. We then performed the genome scan using
the adjusted squared SBP difference and the existing HE

procedure in S.A.G.E. [3].

For comparison, we performed the cross-sectional analy-
sis using the adjusted HE method as above on data from
visit 1. This visit was used because it had the measure-
ments for most of the participating subjects. Since only
one visit was used, the phenotype for each sib pair was
simply the squared difference of the sibs' covariate
adjusted SBP.

Standard HE method

The current HE procedure in S.A.G.E. is not capable of
handling the longitudinal data from multiple visits. In
order to transform the measurements from multiple visits
into the data structure that can be taken by S.A.G.E., we
used for each subject the average values of his/her SBP,
age, and drinking level over his/her available visits, and
fitted the model (2) using the phenotype

Y; = [(average SBP),; - (average SBP),,|

2

‘Z§.1) = ‘genderlj —gender, ‘ ZS.Z) =|(average age)lj — (average age )2],
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2
and 253) =|(average drink)lj — (average drink )2].

where (average A);; denotes the averaged value of A for the
(i, j)th sib over his/her repeated measurements.

Although the above approach is ad hoc, it is a practical
way for transforming repeated measurements to the data
framework currently acceptable by S.A.G.E., and should
be generally acceptable if the data are balanced in the
sense that there are very few missing values in the data set.
However, when the data are unbalanced, the approach of
averaging out observed measurements over different time
points may lead to potential bias for the analysis. One
approach for handling the imbalance caused by missing
data is to combine the above approach with multiple
imputation. But its adequacy under the current setting
deserves further investigation.

To compare the standard HE method with our adjusted
HE method in cross-sectional data, we fitted the standard
HE model using only the data from visit 1 with the
squared trait difference Y; = (SBP;;-SBP,;)?, and covariates

1 2 2 3 . . 2
Zg ) ‘genderlj —gender; ‘ Zg )= (agelj —agey; ) and Zg. )= (drmklj —drinky; ) .

The same procedure can be repeated for cross-sectional
data from other visits. But, since the results from the cross-
sectional analyses do not dramatically differ from one
another, we only included the results for visit 1 in the
presentation.

Results

Longitudinal analyses

Figure 1 shows the multipoint LOD scores based on the
adjusted HE method and the standard HE method for all
22 chromosomes. Both methods exhibit similar general
patterns for the LOD scores. The largest LOD scores are 2.3
to 2.6 for the adjusted HE method and the standard HE
method, respectively, both appear near position 70 <M of
chromosome 12. The adjusted HE method also shows a
few higher LOD score peaks than the standard HE method
at other locations. But all these LOD scores are smaller
than 1.6.

Cross-sectional analyses

Figure 2 shows the multipoint LOD scores for all 22 chro-
mosomes based on the visit 1 data. The LOD scores under
both methods have similar patterns. Compared with the
longitudinal analysis, the LOD score peaks at chromo-
some 12 are slightly smaller and their locations are
slightly shifted; however, several peaks, such as the ones

http://www.biomedcentral.com/1471-2156/4/s1/S51

in chromosomes 4 and 11, do not appear in the longitu-
dinal analyses.

Discussion

We have proposed a new statistical method for adjusting
the effects of covariates for the HE regression when longi-
tudinal data are present. Compared with the linear covari-
ate adjustment in S.A.G.E., our method has two
advantages. First, it can handle repeated measurements in
a longitudinal study using the existing software such as
SAS and S.A.G.E. Second, it adjusts the covariates prior to
linkage analysis in a natural way. There are a number of
possibilities to generalize our approach. One option is to
replace the additive assumptions on the gene and envi-
ronmental effects in equation (5) by terms that allow for
interactions. Other options may aim at modelling and
estimating the covariate effects based on more general
parametric and nonparametric statistical models. These
generalizations require redeveloping the relationship
between the trait difference and the proportion of genes
IBD.
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